JIT Implementation Manual
The Complete Guide to
Just-in-Time Manufacturing
Second Edition

Volume 4
Leveling —
Changeover and Quality Assurance

HIROYUKI HIRANO

CRC Press
Taylor & Francis Group
A PRODUCTIVITY PRESS BOOK
Contents

Volume 1

1 Production Management and JIT Production Management 1
 Approach to Production Management .. 3
 Overview of the JIT Production System ... 7
 Introduction of the JIT Production System 12

2 Destroying Factory Myths: A Revolutionary Approach 35
 Relations among Sales Price, Cost, and Profit 35
 Ten Arguments against the JIT Production Revolution 40
 Approach to Production as a Whole .. 44

Volume 2

3 “Wastology”: The Total Elimination of Waste 145
 Why Does Waste Occur? .. 146
 Types of Waste ... 151
 How to Discover Waste .. 179
 How to Remove Waste ... 198
 Secrets for Not Creating Waste .. 226

4 The “5S” Approach .. 237
 What Are the 5S’s? ... 237
 Red Tags and Signboards: Proper Arrangement and
 Orderliness Made Visible .. 265
 The Red Tag Strategy for Visual Control 268
 The Signboard Strategy: Visual Orderliness 293
 Orderliness Applied to Jigs and Tools .. 307
Volume 3

5 **Flow Production** ...321
 Why Inventory Is Bad..321
 What Is Flow Production? ...328
 Flow Production within and between Factories.......................332

6 **Multi-Process Operations** ..387
 Multi-Process Operations: A Wellspring for Humanity on the Job...387
 The Difference between Horizontal Multi-Unit Operations and Vertical Multi-Process Operations388
 Questions and Key Points about Multi-Process Operations........393
 Precautions and Procedures for Developing Multi-Process Operations...404

7 **Labor Cost Reduction** ..415
 What Is Labor Cost Reduction? ..415
 Labor Cost Reduction Steps ..419
 Points for Achieving Labor Cost Reduction422
 Visible Labor Cost Reduction ..432

8 **Kanban** ..435
 Differences between the *Kanban* System and Conventional Systems...435
 Functions and Rules of *Kanban* ..440
 How to Determine the Variety and Quantity of *Kanban*442
 Administration of *Kanban* ..447

9 **Visual Control** ..453
 What Is Visual Control?..453
 Case Study: Visual Orderliness (*Seiton*)459
 Standing Signboards ..462
 Andon: Illuminating Problems in the Factory464
 Production Management Boards: At-a-Glance Supervision470
 Relationship between Visual Control and *Kaizen*471

Volume 4

10 **Leveling** ..475
 What Is Level Production?...475
 Various Ways to Create Production Schedules477
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differences between Shish-Kabob Production and Level Production</td>
<td>482</td>
</tr>
<tr>
<td>Leveling Techniques</td>
<td>485</td>
</tr>
<tr>
<td>Realizing Production Leveling</td>
<td>492</td>
</tr>
<tr>
<td>11 Changeover</td>
<td>497</td>
</tr>
<tr>
<td>Why Is Changeover Improvement (Kaizen) Necessary?</td>
<td>497</td>
</tr>
<tr>
<td>What Is Changeover?</td>
<td>498</td>
</tr>
<tr>
<td>Procedure for Changeover Improvement</td>
<td>500</td>
</tr>
<tr>
<td>Seven Rules for Improving Changeover</td>
<td>532</td>
</tr>
<tr>
<td>12 Quality Assurance</td>
<td>541</td>
</tr>
<tr>
<td>Quality Assurance: The Starting Point in Building Products</td>
<td>541</td>
</tr>
<tr>
<td>Structures that Help Identify Defects</td>
<td>546</td>
</tr>
<tr>
<td>Overall Plan for Achieving Zero Defects</td>
<td>561</td>
</tr>
<tr>
<td>The Poka-Yoke System</td>
<td>566</td>
</tr>
<tr>
<td>Poka-Yoke Case Studies for Various Defects</td>
<td>586</td>
</tr>
<tr>
<td>How to Use Poka-Yoke and Zero Defects Checklists</td>
<td>616</td>
</tr>
<tr>
<td>Index</td>
<td>I-1</td>
</tr>
<tr>
<td>About the Author</td>
<td>I-31</td>
</tr>
</tbody>
</table>

Volume 5

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Standard Operations</td>
<td>623</td>
</tr>
<tr>
<td>Overview of Standard Operations</td>
<td>623</td>
</tr>
<tr>
<td>How to Establish Standard Operations</td>
<td>628</td>
</tr>
<tr>
<td>How to Make Combination Charts and Standard Operations Charts</td>
<td>630</td>
</tr>
<tr>
<td>Standard Operations and Operation Improvements</td>
<td>638</td>
</tr>
<tr>
<td>How to Preserve Standard Operations</td>
<td>650</td>
</tr>
<tr>
<td>14 Jidoka: Human Automation</td>
<td>655</td>
</tr>
<tr>
<td>Steps toward Jidoka</td>
<td>655</td>
</tr>
<tr>
<td>The Difference between Automation and Jidoka</td>
<td>657</td>
</tr>
<tr>
<td>The Three Functions of Jidoka</td>
<td>658</td>
</tr>
<tr>
<td>Separating Workers: Separating Human Work from Machine Work</td>
<td>660</td>
</tr>
<tr>
<td>Ways to Prevent Defects</td>
<td>672</td>
</tr>
<tr>
<td>Extension of Jidoka to the Assembly Line</td>
<td>676</td>
</tr>
<tr>
<td>15 Maintenance and Safety</td>
<td>683</td>
</tr>
<tr>
<td>Existing Maintenance Conditions on the Factory Floor</td>
<td>683</td>
</tr>
</tbody>
</table>
Contents

What Is Maintenance? ... 684
CCO: Three Lessons in Maintenance .. 689
Preventing Breakdowns .. 683
Why Do Injuries Occur? .. 685
What Is Safety? .. 688
Strategies for Zero Injuries and Zero Accidents 689

Volume 6

16 JIT Forms ... 711
 Overall Management .. 715
 Waste-Related Forms .. 730
 5S-Related Forms ... 747
 Engineering-Related Forms ... 777
 JIT Introduction-Related Forms ... 834
What Is Level Production?

Differences in Reducing Patterns of Product and Parts Inventories

Usually, factories can effectively use a statistical inventory control method, such as the reorder point method, for handling products and replacement parts. Such methods are not suitable for inventories of assembly parts and other parts and materials being used in the factory. One reason for this is the different kinds of demand for these two kinds of inventory.

As shown in Figure 10.1, demand for products is more or less constant, which means that product inventory levels can be
expected to decline smoothly. By contrast, demand for parts is subject to sudden large orders that immediately deplete parts inventory, which is therefore more difficult to manage.

The kind of statistical inventory control that works well for “steady-demand” inventories, such as product and replacement parts inventories, does not work as well for “sudden-demand” inventories, such as assembly parts and materials.

Approach to Leveling

Customers buy just what they want, just when they want it, and in just the amount they want. Overall, this tends to result in a steady demand for products, as reflected in steady shipments from product warehouses.

If the factory can restock the warehouse just as steadily by manufacturing only what the warehouse needs, when it needs it, and in just the amount needed, we would see the same smooth trend reflected in the factory’s demand for parts and materials. However, most production schedules are drafted on the premise of lot production or, as we in JIT disparagingly call it, “shish-kabob production.”

Shish-kabob production may help raise production efficiency in assembly lines, but there is more to a company than assembly lines. We also have to consider shish-kabob production’s impact on other corporate activities, such as sales, distribution, and purchasing. Most factories also include various preassembly processes and parts processing lines. Therefore, just because shish-kabob production may suit assembly line operations does not mean it is a good approach from the perspective of the entire factory or company.

Let us suppose, for example, that the managers of a factory’s final assembly line decide to boost the line’s output performance by assembling only product X this week and only product Z next week. This means that all preassembly processes that specialize in product X will be too busy this week
and will sit idle all next week. Conversely, the processes dedicated to product Z will be idle this week and overworked next week.

Obviously, these preassembly processes need to be scheduled more evenly to enable them to keep up with the assembly line's demand, even though this means that many of the preassembly products will have to sit as inventory until the assembly line is ready to use them. Naturally, such scheduling creates various kinds of waste, such as surplus production waste, idle time waste, conveyance waste, and inventory waste.

It should be obvious enough by now that it does no good to seek improved efficiency and productivity for one section of the factory at the expense of other sections. Instead, we must center our operations on customer needs and try to achieve an even level of high productivity throughout the factory, with low costs and Just-In-Time scheduling. The JIT technique for doing precisely that is called production leveling.

Various Ways to Create Production Schedules

How do factories go about creating production schedules? Actually, each factory’s method seems to be different, and one can gain a sense of the factory’s history by examining the particular method it uses. Broadly speaking, there are four main production scheduling methods, each based primarily on the number of production opportunities per month:

- Once-a-month production
- Once-a-week production
- Once-a-day production
- Level production
Once-a-Month Production

Once-a-month production scheduling often happens when low demand for certain products results in only one production opportunity per month.

Generally, this method starts with a figure for how many products need to be made in a month, and from this figure we calculate the standard daily output that will add up to the desired monthly totals.

Figure 10.2 shows an example of once-a-month production. In this example, it has been decided that products X, Y, and Z would be manufactured in that order. Because the demand for these products varies, the factory is prepared to adjust the number of production days for each model to produce the correct totals to meet current demand.

Figure 10.2 Once-a-Month Production.
I have not included twice-a-month production scheduling as a type by itself because the twice-a-month approach is almost exactly like the once-a-month approach, except that everything works within a two-week time frame instead of a month.

In the past, once-a-month production scheduling did a pretty good job of serving factory needs. Back then, markets were more stable, product variety was much smaller, and factories could generally sell whatever they made. If we change our perspective from the producer's standpoint to the consumer's standpoint, however, we can see that traditional once-a-month production scheduling is a rather stubborn and selfish method (that is, a “product-out” method in which factories push their products onto the market). It is as if the factory people were saying: “Look, this is all we make, and we only make them once a month. So take it or leave it.”

Those days are long gone. Today, it is not easy to find factories that stick to the old once-a-month program. Most have switched to once-a-week production scheduling. But even that has not changed things that much.

Once-a-Week Production

Whether it be once-a-month or once-a-week production, the basic philosophy is the same. The big difference is that product warehouses and production opportunities are only one-fourth as big as they used to be.

Figure 10.3 illustrates once-a-week production.

As seen in the figure, the month’s estimated output is unconditionally divided into four equal weekly totals, with a separate production schedule created for each week. Sometimes the output for the current week must be raised or lowered depending upon how product inventory levels stood at the end of the previous week.

In today’s fast-paced manufacturing world characterized by increasing product diversity, manufacturers find themselves
compelled to break down monthly production schedules into at least four (weekly) parts.

Once-a-Day Production

Many factories are taking up the challenge of maintaining daily production schedules. The idea is to divide up the estimated monthly output into the number of working days in the month so that production of the entire assortment of models gets repeated once a day. This puts a focus on manufacturing using an integrated production line.

Figure 10.4 shows an example of once-a-day production scheduling.

As seen in Figure 10.4’s example, once-a-day production is a much more sophisticated and detailed way of scheduling production because it provides 20 times the production
opportunities of once-a-month production and produces 20 times less inventory.

Detailed as it is, however, once-a-day production does not necessarily mean level production. If we look at the production schedule for any particular day (see the example in Figure 10.4), we find that the factory spends all morning turning out product X, part of the afternoon producing product Y, and the rest of the afternoon with product Z. In other words,
the factory is still carrying out the same old “shish-kabob” production routine, but with more model changeovers.

Leveling Production

The fundamental concept underlying level production is that production of different product models—whether it be lot production or one-piece flow production—can be evenly spread out to match the current sales trends, which also require adjusting the production pitch accordingly and maintaining an integrated production line. As such, level production is a thoroughly “market-in” approach.

We might define production leveling as “making production of various product models and volumes completely even.”

Figure 10.5 shows an example of level production. Comparing this to the previous example of once-a-day production, we can see that they both add up to the same daily output totals. Level production, however, divides the daily output total by the amount of working time in the day (expressed in minutes) to obtain an hourly pitch time. This pitch time is called the cycle time.

In Figure 10.5’s example, the tact time is 9.6 minutes for product X, 16 minutes for product Y, and 24 minutes for product Z. The factory needs to organize its production line to maintain these tact times while using a mixed-flow production method.

Differences between Shish-Kabob Production and Level Production

One chief characteristic of level production is that, within a certain month, the same products are produced in the same quantities each day and within each time band in the day.

Let us examine the ways in which level production differs from “shish-kabob” production.
Production philosophy regarding the making of products constitutes a major point of difference between level production and “shish-kabob” production. Shish-kabob production goes hand in hand with the “product-out” production philosophy. The main points of the “product-out” philosophy are to develop products that are easy to manufacture and to set-up the production line to facilitate large-lot production of such
products. Level production instead emphasizes serving market needs, which means it follows the “market-in” philosophy.

Difference 2: Production Method

Shish-kabob production is made up of lots (the chunks on the “shish-kabob” skewer). Changeovers must be made after each lot is completed. In level production, all of the various models are mixed into each cycle time within the overall production line.

Difference 3: Approach to Efficiency

In shish-kabob production, we generally try to maximize efficiency at specific processes, such as the pressing or cutting processes. In level production, we try instead to maximize overall efficiency within the framework of the cycle time.

Difference 4: Approach to Machines

In shish-kabob production, we spend at least a few hours turning out the same product model, then we retool and begin manufacturing a different model for a while. To keep the line moving quickly, we need fast (the faster the better) and, preferably, general purpose machines that require little retooling to changeover to a different product model. Usually, such equipment is expensive and bulky.

By contrast, for level production we need equipment that is just fast enough to keep within the cycle time and that is small enough to be placed directly into the production line. This usually calls for small, inexpensive, and specialized machines.

Difference 5: Inventory and Lead-Time

Shish-kabob production inevitably includes production flow cut-off points between certain processes. Wherever such a cut-off point exists, there will necessarily be an accumulation of in-process inventory. In-process inventory means retention, and retention means a longer lead-time and a greater need for conveyance. In level production, we try to synchronize all processes within the cycle time. This effectively eliminates
in-process inventory and minimizes both lead-time and conveyance needs.

These are just the major points of difference between conventional shish-kabob production and level production. It is not hard to see which production method is better suited to today’s demands for fast turnaround and dynamism in production. Figure 10.6 summarizes the above differences in a tabular format.

Leveling Techniques

Cycle Time and Cycle Tables

“How long does it take to make one product unit?” This is a very important question both for the equipment operators and the factory managers, and it is something we must know before we can draft a production schedule. If the factory is carrying out shish-kabob production, the general per-item manufacturing pitch can be decided based on the equipment capacity and available manpower. But this is not the best way to figure the production pitch. Calculating a pitch based on machinery and manpower is a production-centered approach. It may enable the factory to achieve a fast pitch, but even a lightning-speed pitch does no good unless the products can be readily sold. Otherwise, the factory is just stocking product warehouses and raising costs. We should look instead to current market needs as a basis for determining the manufacturing pitch.

Cycle Time

The cycle time is the amount of time (expressed in minutes and seconds) within which one item must be manufactured. In JIT, we obtain the cycle time by dividing the total production output required to match current market needs by the amount of work time (expressed in minutes) in the day.
Differences between Shish-Kabob Production and Level Production

<table>
<thead>
<tr>
<th></th>
<th>Shish-Kabob Production</th>
<th>Level Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Philosophy</td>
<td>Product-out (production-centered) philosophy “Produce just what is easy to make, just when it is easy to make it, and in just the amounts that are easy to make.”</td>
<td>Market-in (market-centered) philosophy “Produce just what is needed, just when it is needed, and in just the amounts needed.”</td>
</tr>
<tr>
<td>Production Method</td>
<td>Lot (shish-kabob) arrangement Arrange products into large model-specific lots to minimize changeovers.</td>
<td>Cycle time arrangement Arrange products into assortments that match market needs and can be manufactured within the cycle time in an in-line production configuration.</td>
</tr>
<tr>
<td>Approach to Efficiency</td>
<td>Emphasis on individual process efficiency The production pitch is based on the rhythm of individual processes with maximum efficiency sought at each process.</td>
<td>Emphasis on overall line efficiency We try to improve the efficiency of the entire line within the framework of the cycle time.</td>
</tr>
<tr>
<td>Approach to Machines</td>
<td>High-speed, general purpose, large, and expensive machines We need faster machines to handle large lot volumes, which usually means we need a large, expensive, general purpose machine.</td>
<td>Moderate-speed, specialized, small, and inexpensive machines Our machines need only be fast enough to keep up the cycle time. The important thing is that the machines be small and specialized enough to fit right into the production line to handle one-piece flow operations. Such machines are usually much less expensive than large, general purpose machines.</td>
</tr>
<tr>
<td>Inventory and Lead-time</td>
<td>Large inventories and long lead-times When workpieces are worked on in lots, retention is inescapable. Retention accumulates in-process inventory and results in longer lead-times and a greater need for conveyance.</td>
<td>Small inventories and short lead-times When workpieces flow along one piece at a time within the cycle time, there is very little in-process inventory, which means shorter lead-times and almost no need for conveyance.</td>
</tr>
</tbody>
</table>

Figure 10.6 Differences between Shish-Kabob Production and Level Production.
PER-DAY PRODUCTION TOTAL = \frac{PER-MONTH PRODUCTION TOTAL}{WORKING DAYS IN MONTH}

\text{CYCLE TIME} = \frac{\text{AMOUNT OF WORK TIME (MINUTES) IN DAY}}{\text{PER-DAY PRODUCTION VOLUME}}

Specifically, we begin by dividing the month’s production output by the number of working days in the month. Then we divide each working day’s working time (minutes) by the required output for the day (see the equations on previous page). The result is the cycle time.

“Cycle List” and “Nonreserved Seat” Methods

We can use the particular cycle time for each item and the various product models in the mixed-flow operation to establish a single constant pattern of production flow.

Cycle lists are wheel-like illustrations that show the constant production pattern that gets repeated throughout the day to turn out the required variety and volume of products. If the proportionate shares of product models are 50 percent for product X, 30 percent for product Y, and 20 percent for product Z, we could express that pattern in a cycle list like the one shown in Figure 10.7.

It is best to follow the cycle list as closely as possible. However, an array of problems sometimes arises to cause variation in cycle times. When such variation is common, I always suggest adopting the “nonreserved seat” version of the cycle list. Each cycle scheduled in a nonreserved seat cycle list includes one or two steps that are kept available (“nonreserved”) to compensate for variations. (See Figure 10.8.)

The point of the nonreserved seat cycle list is to have the “nonreserved seat” section of the list compensate for variations caused by small accumulations of in-process inventory,
Figure 10.7 Cycle List.

Figure 10.8 "Nonreserved Seat" Cycle List.
which is evident from corresponding detached *kanban*. If the timing of the *kanban* is part of the problem, the cycle list itself needs to be revised.

The “Reserved Seat” Method for Practical Use of Cycle Lists

A workshop can more easily get used to working with a cycle list if it is already offset by a “reserved seat” system.

The “reserved seat” has proven most effective in workshops that have processes such as plating or painting—that is, any process that uses hangers for batch processing of workpieces. Due to certain quality issues, people in plating and painting workshops have a hard time getting away from the idea of shish-kabob production. Generally, if the factory is manufacturing three product models (X, Y, and Z), these processes would handle workpieces for each model in separate batches, as shown in Figure 10.9.

Processing model-specific batches of workpieces as shown in Figure 10.9 leads to the following problems:

Problem 1

In JIT’s pull production system, the lots are always pulled from downstream processes. At the painting process shown in the figure, this would require a large amount of in-process inventory between the painting process and the previous (upstream) process.
Problem 2
The processes downstream from the painting process handle mixed-model flow production. This would necessitate a large amount of in-process inventory between the painting process and the next (downstream) process.

Problem 3
Defects can easily arise from damage that occurs to workpieces when they are removed in batches from the hangers after being painted.

Problem 4
Since hangers always carry the same types of workpieces, a change in the proportions of product models in the production schedule causes variation-related problems in paint operations.

Problem 5
The painting process interrupts the overall production flow and makes it difficult to raise overall efficiency.

Figure 10.10 shows how all of these problems can be solved by leveling production at the painting process via the “reserved seat” method.

The “reserved seat” configuration of workpieces on hangers eliminates the need for in-process inventory while opening up space and providing adaptability toward model mix changes. Even the work of setting workpieces on hangers and removing them has been leveled to enhance operational smoothness and stability.

![Diagram]

Figure 10.10 Application of Reserved Seat Method at a Painting Process.

Product X workpieces (4) + Product Y workpieces (2) + Product Z workpieces (3) × 6 hangers
The “Baton Touch Zone” Method and Bypass Method

Line balancing is vital for successful assembly line operations. It is especially important to maintain a constant amount of work for each line worker when the line handles a mixed flow of various product models in small lots. In mixed-model assembly lines, the key is to keep the assembly workers performing the same tasks so that their efficiency will be roughly equal to single-model (mass production) assembly lines. If the workers have to change their tasks with each model, they are much more likely to make defects, such as assembly errors or omitted parts. In addition, their efficiency will suffer.

This is why production leveling and group technology (GT) are so important at the design stage. At the delivery stage, sequential delivery is also necessary. Another way to help level out manual labor on the line is by using a cooperative operation technique, such as the “baton touch zone” method or the “bypass” method.

The Baton Touch Zone Method

This method takes its name from the way relay runners pass batons within a zone to avoid the difficulty of passing the “work” of carrying the baton at any specific completion point. In the factory, the baton touch zone is a certain range of operations within which an operator may pass on his or her work to the next operator. The flexibility afforded by such a baton touch zone helps maintain line balancing when product models are changed. (See Figure 10.11.)

The Bypass Method

When the amount of manual work differs so much from product model to product model that the baton touch zone method will not work, we can use the bypass method to establish a separate “bypass” line that can accommodate the model change. (See Figure 10.12.)
However, we cannot make bypass lines from just any line. We must first establish mixed-model flow production and balance the line based on that type of production. Please remember that the bypass method should only be used as a last resort when the baton touch zone method is not feasible.

Realizing Production Leveling

Developing Flow Production

If production is leveled for only one group of the factory’s production processes, such as only the assembly line, it may not work to raise the factory’s overall efficiency. To do that, the entire production system must be developed as a flow production system.
Figure 10.13 shows a sink cabinet manufacturer’s door preparation process before improvement. Before the improvement, the door preparation process was located on the second floor of the factory. The workers at that process would select doors from the assortment of doors in stock and hook them onto a hanger conveyor that would carry them down to the assembly line on the first floor.
Once production was leveled at the assembly line, the door preparation process was no longer able to keep up with the assembly line’s needs, and people began wondering if the door preparation process could establish mixed-model preparation operations to match the mixed-model assembly operations at the assembly line.

To make this improvement, the factory managers moved the door preparation process down to the first floor so that all workers and equipment could be on the same floor. They set-up this process as a U-shaped manufacturing cell right next to the door fastening process in the main assembly line. They then synchronized production in this cell to match that of the leveled mixed-model flow line. As a result, they reduced inventory to almost zero, achieved a major reduction in manpower, and took advantage of the open space on the second floor to set-up a long-wanted ping-pong table.

Improved (Kaizen) Retooling

Factories generally include both processing lines and assembly lines. The key point for production leveling of processing lines is to improve retooling. Being able to switch among product models and to improve the balance of assembly line operations are the main concerns of production leveling in assembly lines.

Figure 10.14 shows how one factory improved its shipment pickup operations so that goods completed by the assembly line are picked up eight times a day (once every hour), instead of just once a day. To make hourly pickup possible, the assembly line mainly had to improve its product model changeover procedures to shorten the changeover time. Once they did this, the post-assembly inventory dropped to one-eighth of its former level and accumulation of in-process inventory after the preparation and processing steps was eliminated, thus establishing smooth flow production.
Figure 10.14 Improving Changeover at an Assembly Line.
Chapter 11

Changeover

Why Is Changeover Improvement (Kaizen) Necessary?

One obsolete notion that still finds firm believers in many factories is that of “economic lot size.” Economic lot sizes are thought to be whatever lot size helps to minimize the sum of changeover costs and inventory costs. Factories traditionally have tried to keep their lot sizes as close to the ideal “economic lot size” as possible.

Factories have often economized not so much by approximating the ideal economic lot size, but by making lots a little larger and minimizing die changes by using more parts from fewer dies. These money-saving efforts probably had some value during the bygone days of limited product variety and large-scale mass production. However, today the trend is for diverse product models and small-lot production with short delivery deadlines. These radically different circumstances require a new approach to economic lot sizes.

The conventional idea of economic lot size assumes that inventory costs and changeover costs are constant; but changeover costs can vary significantly. Moreover, changeover improvements can drastically reduce the changeover costs.

Often, when factory managers look at costs within processes, they do not include costs related to in-process inventory in
overall inventory costs and they only recognize changeover costs. In terms of the entire factory’s efficiency, however, large-scale lot production incurs a wide array of waste-related costs, such as surplus production cost, idle time costs, conveyance costs, inventory costs, set-up and removal costs, and defect-related costs. And that is not all: Larger lot sizes also mean more in-process inventory, and the more in-process inventory a factory has, the longer the lead-time for its products. Aside from costs, the factory must deal with the accumulation of goods at certain points and a disruption in the overall flow of goods.

Many factories find themselves in dire straits trying to keep up with current market demands for wide variety and small lots, short delivery, and high quality. The kinds of improvements JIT brings to changeovers can shorten changeover time and enable various product models to be made more quickly and efficiently.

What Is Changeover?

Types of Changeover Operations

Changeover means a certain kind of set-up that we must make before beginning a different set of operations. Often, a changeover’s set-up procedure involves rearranging things. The following are the main types of changeover procedures performed in factories.

Type 1: Exchanging Dies and Blades

This kind of changeover is very common in machining shops and is usually a prime candidate for JIT improvement. Often the machine tool operators must retool their machines by exchanging metal dies, casts for injection molding, drill bits, saw blades, and the like.
Type 2: Changing Standard Parameters

Computer-programmed high precision cutters and chemical processing equipment often require operators who can change the standard parameters used for different processing tasks. Unfortunately, the more of this kind of changeover a machine needs, the more smooth operations depend on highly trained operators.

Type 3: Exchanging Assembly Parts or Other Materials

Whenever an assembly line switches to assembling a different product model, it needs to receive supplies of the parts and other materials that go into the new model. The related changeover procedures for this can include exchanging dies (die changing is not unique to processing lines!). In assembly lines, exchanging equipment components is sometimes referred to as “switchover” or “retooling.”

Type 4: General Set-up Prior to Manufacturing

This type of changeover includes all the miscellaneous set-up tasks that must be done before we can begin manufacturing products. These tasks can include arranging the equipment and assigning jobs to workers, checking drawings, and sweeping up.

Approach to Changeover Times

Many factory people think of changeover time as the period that begins when the operator starts performing changeover procedures and ends when he or she completes those procedures. This, however, is not really the case. Instead, we should remember the following definition of changeover time:

Changeover time begins when the current processing task is finished and ends when the next processing task produces a defect-free product.
More specifically, the part of this time period during which the machine does not add any value to the workpiece is called the “internal changeover time.” Many people tend to confuse the internal changeover time with the entire changeover time. The entire changeover time is the sum of the internal and external changeover times. This may be easier to remember in terms of an equation:

\[
\text{Changeover time} = \text{internal changeover time} + \text{external changeover time}
\]

- \textit{Internal changeover time}: Internal changeover time begins when the current processing task is finished and ends when the next processing task produces a defect-free product. Throughout this time, the machine does not add any value to the workpiece.

- \textit{External changeover time}: External changeover time is the time spent by the operator carrying out set-up procedures independent of the machine while the machine is operating.

Therefore, when seeking to improve changeover operations, we need to address possible changes in both the internal and external changeover procedures in order to make a comprehensive changeover improvement.

\section*{Procedure for Changeover Improvement}

Depending upon the type of work involved, changeover procedures fall into three categories: internal changeover, external changeover, and waste.

- \textit{Internal changeover procedures}: These procedures cannot be implemented unless the machine is stopped (not operating).
External changeover procedures: These procedures can be implemented whether or not the machine is stopped (not operating).

Waste: This includes searching for jigs and tools, waiting for the crane, and other nonproductive activities that are not directly related to changeover procedures. If there is too much of this, the factory itself may get stopped in its tracks.

Figure 11.1 shows how we can divide up various changeover improvement steps according to these three categories.

Step 1: Form a changeover *kaizen* team

Once people recognize a growing need for changeover improvement, they need to analyze the situation and form a changeover *kaizen* (improvement) team. At this point, it is vital that the newly formed team receive strong support from the company’s upper management.

Step 2: Analyze changeover operations

If we find that a certain changeover operation is taking an extra long time, we need to analyze it to find the reason. Using JIT changeover improvement tools, such as...
changeover result tables and changeover analysis charts, we can make the problems more obvious and explicit.

Step 3: Flush out wasteful operations and apply the 5S’s to eliminate waste

We can start by categorizing all current changeover operations into internal changeover operations, external changeover operations, and wasteful changeover operations. Then we can eliminate the waste, preferably by applying the 5S’s (the 5S’s are described in Chapter 4).

Step 4: Transform internal changeover into external changeover

People have often found clever ways to turn internal changeover tasks that had previously required an idle machine into external changeover tasks that can be performed while the machine is running. Whenever this has been done, it has resulted in considerable shortening of the overall changeover time.

Step 5: Improve remaining internal changeover

Once we have transformed at least some of the internal changeover work into external changeover work, we will have a clearer understanding of the remaining internal changeover procedures. At this point, we are ready to review these remaining procedures and see if there are ways to make them take less time. Sometimes we can do this by reducing or eliminating bolts, developing cassette units of replacement parts, or establishing parallel changeover procedures.

Step 6: Improve external changeover

Since the overall changeover time is the sum of the internal changeover time and the external changeover time, we should make time-saving improvements in both internal and external changeover. Ways of improving external changeover include establishing proper arrangement and orderliness (the first and foremost of the 5S’s), developing more specialized machines, and offering additional training in changeover-related skills.
Launching Changeover Kaizen Teams

Often, an acute need for changeover improvement is disguised in seemingly unrelated complaints, such as: “Lately, our capacity utilization rates have been dropping for some reason,” or, “We’re having trouble keeping up with the product diversification trend.” Even when the need for changeover improvement is obvious, individuals rarely get inspired enough to make the improvement by themselves.

Figure 11.2 shows one way to make the need for changeover improvement obvious to everyone, namely by plotting on a graph the relationship between the number of product models handled and the equipment capacity utilization rate.

The following are a few pointers for changeover improvement teams.

1. Learn the changeover improvement rules
 All changeover kaizen team members should meet at least once for a study session so that everyone can gain a firm understanding of the rules and “tricks” for changeover improvements.

2. Set-up and carry out a schedule of “public changeover demonstrations”
 Schedule a series of weekly changeover demonstrations that are open to everyone in the factory to watch. Try to include as many different types of equipment and production lines as possible in the series. The schedule of demonstrations should be drawn up in an attractive format and posted throughout the factory.

 Everyone who attends a changeover demonstration should be acknowledged as an observer and a possible source of improvement ideas. It might help to divide the improvement team members to review the demonstration together and brainstorm further improvement ideas.

 The public changeover timetable shown in Figure 11.3 may come in handy when reviewing public changeover
demonstrations. Be very careful to avoid negative talk about individual improvement ideas, such as: “That will never work,” or, “Even if we try that, it’s impossible.” People should feel free to put forth any idea without fear of it being shot down on the spot. Finally, use a change-over improvement list (shown in Figure 11.4) to write

<table>
<thead>
<tr>
<th>Model and Operating Rate Trend Chart</th>
<th>Machine code</th>
<th>Types</th>
<th>Operator</th>
<th>Date</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Boring (No. 2 Mfg.)</td>
<td>M11</td>
<td>20</td>
<td>Fujiyoshi</td>
<td>1/10/89</td>
<td></td>
</tr>
<tr>
<td>Process manager</td>
<td>Yamagawa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity utilization rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity utilization rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Jan 88</td>
<td>18</td>
<td></td>
<td>Dec 88</td>
<td>2.6</td>
</tr>
<tr>
<td>Types</td>
<td>Dec 88</td>
<td>12</td>
<td></td>
<td>Mar 89</td>
<td>%</td>
</tr>
<tr>
<td>Capacity utilization rate</td>
<td>Jan 88</td>
<td>18</td>
<td></td>
<td>Dec 88</td>
<td>2.6%</td>
</tr>
<tr>
<td>Types</td>
<td>Dec 88</td>
<td>12</td>
<td></td>
<td>Mar 89</td>
<td>%</td>
</tr>
</tbody>
</table>

Figure 11.2 Graph Showing the Relationship between the Variety of Product Models and Equipment Capacity Utilization Rates.
down all of the proposed improvement ideas in detail, including a description of the proposed improvement, the parties involved, and other details. Make sure everyone in the changeover improvement team reads the list.

3. Be sure to carry out lateral development of improvements
The prime opportunity for changeover improvement is when we have succeeded in making an improvement on one machine or set of equipment, since we would then have the know-how to “laterally develop” the same improvement on other similar machines. For instance, if we have succeeded in reducing changeover time for a certain pressing unit to under ten minutes, we can go ahead and make the same improvement on the factory’s nine other presses, which gives us ten times the “bang” for the same initial “buck” of improvement effort.

No matter what kind of JIT improvement we have made, we should always be mindful of the great impact our improvement can have when developed laterally (or “horizontally”) to other machines, processes, or people.

Analyzing Changeover Operations

Before making an improvement in changeover operations, we need to compile some results to check out the following possible problems:

1. Variation in the frequency of changeover operations.
2. Variation in the changeover sequence or method depending upon the workers involved or on the general “mood” of the day.
3. Major variation in changeover times depending upon the product models.
4. Dies, jigs, and tools are not being put back properly and workers must waste time looking for them.
5. There seems to be an unnecessary number of bolt loosening and tightening operations involved in the changeover.
6. Only one worker knows how to perform the fine-tuning operations following changeover.
7. The workshop always needs to turn out about 10 test runs following changeover.
These kinds of problems tend to crop up in workshops that have not learned to perform changeover operations skillfully. To make such problems obvious enough to clearly recognize and resolve, we need to compile results data concerning changeover operations.

Figure 11.5 shows a “changeover results table.” By entering data describing current changeover operations, we can more easily discover which changeover operations are giving the workshop operators the most trouble and which are taking up too much time. Once we know such facts, we are in a better position to begin making improvements.

Once we recognize from the data entered on the changeover results table that a certain changeover operation is particularly difficult, we can target that changeover operation for improvement and perform a public changeover demonstration to analyze it. We need to enter the data from the demonstration on either a public changeover timetable (Figure 11.3) or a changeover operations analysis chart (Figure 11.6). Public changeover timetables are the more useful of the two when several operators are performing the changeover and are observing each others’ work. Changeover operations analysis charts are recommended when there is only one operator.
performing the changeover and when that operator needs
detailed changeover-related data from which to plan improve-
ments. If you do use a changeover operations analysis chart for
changeovers done by several workers, a separate chart form
should be filled out for each worker. These forms can then be
used as a basis for filling out a public changeover timetable that
will show how the workers’ operations relate to each other.

The thing to remember when filling out changeover opera-
tion analysis charts is to get into detail while observing and
describing each changeover operation. When the observer has
too many operations to observe, the improvement plans will
be too numerous and the improvements too vague. The most
important part of this chart is the categorization of changeovers.
The observer must carefully distinguish among internal change-
over operations, external changeover operations, and wasteful
operations. The type of improvement to be made may depend
very much on how the changeover operation is categorized.

Identify Wasteful Operations and Apply the 5S’s to Eliminate Waste

Waste is everywhere—in every workshop and in every oper-
ation. Naturally, there are bound to be various types of waste
lurking within changeover operations. If, after standing back and watching a changeover operation, we have found nothing in the operation that adds any value to the workpiece, we can put that operation in the “waste” category. This is not to say that it is simply a matter of removing the entire changeover operation as superfluous. Removing wasteful changeover operations always requires some consolidation and standardization of dies, jigs, and/or tools, the establishment of specialized lines, or other measures to incorporate the changeover's functions into other operations.

The next step is to distinguish between the essential and nonessential ingredients in each changeover operation and thoroughly remove the nonessential elements.

As shown in Figure 11.7, we need to distinguish waste in internal changeover operations from waste in external changeover operations.

Waste in Internal Changeover Operations

Waste in internal changeover operations includes “replacement waste,” such as when exchanging dies or blades, and “adjustment waste,” such as when making the necessary adjustment to achieve output of nondefective products following the changeover.

- **Replacement waste**
 Most of the waste created during replacement of dies or blades is related to removing and fastening bolts. We should regard bolts as our enemies. When necessary,
they are necessary evils; when unnecessary, we should find some way to eliminate them. When bolts are necessary evils, we can at least use small nets, C washers, or other devices that enable us to loosen or tighten the bolt with just one turn of the wrench.

All such improvements fall under the category of internal changeover improvement.

Adjustment waste
I have often heard factory workers explain, “That guy over there is the only one who can fine-tune that machine correctly.” Why in the world would a factory want to have a machine whose correct operation depended on one individual? Why hasn’t that individual taught others how to do the tricky adjustment correctly?

We must go even more deeply into this issue to ask, “Why does the fine-tuning have to be done to begin with?” Fine-tuning is only needed when machines have been allowed to stray from their standard settings. In JIT, we have a saying: “If you move your hands, make sure your feet and the standards stay put.” Factory managers and workers must find a way to operate the equipment without straying from the standard parameters. If that is impossible, they must improve the changeover operation to eliminate the need for additional adjustments.

Waste in External Changeover Operations
Almost all of the waste found in external changeover operations is in some way related to the 5S’s. This kind of waste is basically either “preparation waste” or “cleanup waste.”

Preparation waste
When it comes to preparation waste, the chief culprit is usually “searching waste.” Workers waste time searching for carts, jigs and tools, dies, blades, cleaning equipment, and various other misplaced items. None of that searching waste would exist if only the factory enforced the two most basic of the 5S’s—proper arrangement and orderliness.
■ Cleanup waste

Not surprisingly, the main cleanup-waste villain is “returning waste.” Workers waste time walking around to put back the same assortment of items—cleaning equipment carts, jigs and tools, dies, blades, and so on. Rarely do they stop to wonder if all that walking around is really necessary. A thorough implementation of the 5S’s—or even just 2S’s (proper arrangement and orderliness)—would teach them that in practically all cases, things can be quickly replaced locally, without any walking required.

Even after a workshop has eliminated all preparation waste and cleanup waste in its changeover operations, its total changeover time will still depend very much on how well the 5S’s (especially proper arrangement and orderliness) are enforced. Figure 11.8 shows the JIT form called “changeover 5S checklist.” In the figure, this checklist has been filled with data taken from a machining (boring line) workshop. The checklist helps us evaluate 5S enforcement in changeovers at each process.

The following symbols were used on the checklist to indicate how well specific operations were performed (parenthetical comments indicate how symbols are used to answer yes/no questions):

- ○ Can be done well (or “Yes”)
- △ Can be done, but not well (or “Mostly yes”)
- × Cannot be done (or “No”)

Turning Internal Changeover into External Changeover

Figure 11.9 shows a time graph analysis of improvements in changeover procedures. The graph indicates that the 5S’s were
<table>
<thead>
<tr>
<th>No.</th>
<th>5S checklist item</th>
<th>Date and Operator</th>
<th>Improvement plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Are different sets of jigs and tools used for changeover kept by each machine?</td>
<td>1/9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Are the jigs and tools within easy reach during changeovers?</td>
<td>1/11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Are the jigs and tools laid out according to the order of use during changeover?</td>
<td>1/12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Are the jigs and tools laid out in an orderly manner?</td>
<td>1/13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Are there some carts reserved expressly for use in changeover and do they have a prescribed storage site?</td>
<td>1/14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Are the items in the carts arranged in an orderly manner?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Does each machine carry instructions from the changeover operations manual?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Are the operators performing the changeover as instructed in the manual?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Have quality standards been set for each model?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Are the standards posted on each machine?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Are defect-free samples of each model on display for reference?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Are the samples displayed next to the appropriate machines?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Are the required measuring instruments kept next to each machine that needs them?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Are the measuring instruments all kept within easy reach?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Are the measuring instruments kept in an orderly manner?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Is it clear where blades and other replaced items should go after changeover?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Is it clear where blades and other replaced items should be before changeover?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Is the next workpiece kept next to the machine?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11.8 Changeover 5S Checklist.
applied to remove a lot of waste at Step 3 in the improvement. The most important part of the improvement was turning internal changeover to external changeover.

The following is a case study of the transformation of internal changeover into external changeover at a printed circuit board (PCB) assembly plant.

From Internal Changeover to External Changeover at a PCB Assembly Plant

Like most PCB lines, this one was staffed by many workers and involved the assembly of many components. The gist of this improvement was to question the need for a single PCB assembly line and to discover the advantages of splitting up the equipment and workforce into several model-specific assembly lines.

For some factories, such a major reorganization of assembly operations is just too ambitious an undertaking. Naturally, keeping one assembly line means that changeover operations will be needed whenever the line changes product models.
The following three points are musts for assembly lines that include dozens of workers and that must carry out changeover operations when switching models:

1. All product-model changeover must take place within the cycle time.
2. The PCB substrate board sizes must not vary from model to model.
3. The line must use assembly work methods that prevent the need for operational balancing after changeover.

Before launching into the first and foremost of these three musts, a little more needs to be said about the second and third ones. If the same assembly line must handle substrate boards in various sizes, the boards should be carried in containers of equal size in order to avoid having to adjust the width of the conveyor belt during each model change.

The third must concerns the balance of assembly operations on the line. The options are either to reorganize and rebalance the assembly operations after each model change, or to use a flexible-operations method—such as cooperative operations or the baton touch zone—to avoid having to rebalance after model changes.

Figure 11.10 illustrates an example of the first and most important must, changeover within cycle time.

Before the improvement, whenever a model change occurred, all of the previous model's workpieces had to be completed and removed from the conveyor so that the conveyor width could be changed. While this was going on, the assembly workers were busy changing parts sets. They had managed to reduce their overall changeover time to 15 minutes. Since there were 10 people on the assembly line, we can figure the total labor “down time” as (15 minutes × 10 persons =) 150 minutes. Changing product models four times a day would incur a daily total labor down time of 600 minutes or 1.5 worker-days.
The following is a case study of how internal changeover was changed to external changeover in an injection molding process. Two workers handled the changeover operations before the improvement, but their respective responsibilities were not made very clear, resulting in a total changeover time of about 40 minutes. An analysis of their changeover operations revealed that all of their changeover operations were internal, meaning that they were being performed while the machines were stopped. (See Figure 11.11.)
Before improvement
Total changeover time: 40 minutes

After improvement
Total changeover time: 5 minutes

Description of operation

Worker A

1) Preheat mold
2) Move new mold onto loading stage
3) Prepare and arrange tools
4) Prepare injection parts supply boxes
5) Lower positioning notch

Worker B

1) Preheat mold
2) Move new mold onto loading stage
3) Prepare and arrange tools
4) Prepare injection parts supply boxes
5) Lower positioning notch

External changeover

1) Close injection molding machine
2) Remove bolts from right side
3) Open injection molding machine
4) Set previous mold onto unloading stage
5) Load new mold from loading stage
6) Close the injection molding machine
7) Insert and tighten bolts on tight side
8) Set parameters
9) Start injection molding machine
10) Switch chucks in auto-extraction device
11) Check quality of first product
12) Store away previous mold
13) Clean up tools

Internal changeover

1) Insert and tighten bolts
2) Open injection molding machine
3) Wait for crane, then operate crane
4) Attach hook, hand hook from crane
5) Remove bolts
6) Open injection molding machine
7) Attach previous mold to crane hook, use crane to move it to storage area
8) Detach hook and set it up on new mold
9) Move new mold to injection molding machine, set in position
10) Finish setting new mold in injection molding machine, then close the machine
11) Insert and tighten bolts
12) Detach hook and remove crane
13) Switch chucks in auto-extraction device
14) Set parameters and preheat molding machine
15) Switch injection parts supply boxes
16) Put away tools
17) Start molding machine
18) Stop machine to check quality of first product

Post-changeover cleanup

1) Clean up tools

Internal changeover cleanup

1) Find tools
2) Prepare and arrange tools
3) Remove hot runner (for coolant)
4) Wait for crane, then operate crane
5) Attach hook, hand hook from crane
6) Remove bolts
7) Open injection molding machine
8) Attach previous mold to crane hook, use crane to move it to storage area
9) Detach hook and set it up on new mold
10) Move new mold to injection molding machine, set in position
11) Finish setting new mold in injection molding machine, then close the machine
12) Insert and tighten bolts
13) Detach hook and remove crane
14) Switch chucks in auto-extraction device
15) Set parameters and preheat molding machine
16) Switch injection parts supply boxes
17) Put away tools
18) Start molding machine
19) Stop machine to check quality of first product

Figure 11.11 Changing Internal Changeover to External Changeover in an Injection Molding Process.
The improvement included reassigning the two workers’ tasks according to the sequence of the changeover operation and changing as much of the internal changeover procedures as possible into external changeover procedures. As a result, they were able to greatly reduce the overall changeover time to about five minutes.

Changing Internal Changeover to External Changeover in a Wire Harness Molding Process

Figure 11.12 shows an example of how internal changeover was changed to external changeover in a wire harness molding process.

In this process, some rubber is molded onto part of the wire harness. Before the improvement, the harness was set directly into the metal mold. This took a lot of time to do, and the workers had nothing to do during the actual molding process. An analysis came up with the following measurements:

- Harness setting time: 10 seconds (internal changeover)
- Idle time during molding process: 10 seconds

![Figure 11.12 Changing Internal Changeover to External Changeover in a Wire Harness Molding Process.](image)
As part of the improvement, two sets of molding jigs were created so that four harnesses could be set as external change-over operations. This greatly shortened each harness’s metal mold setting time and dramatically improved productivity in the molding process. It also completely eliminated the idle time during the molding process. As a result:

- Harness setting time: 10 seconds (external changeover)
- Mold jig replacement time: two seconds
- Idle time during molding process: none

Improving Internal Changeover

Two types of waste can be found in internal changeover operations: replacement waste, as when replacing dies or blades, and fine-tuning waste, as when adjusting the equipment to produce a defect-free product.

The following describes three methods for dealing with and eliminating these three types of waste:

- Replacement waste
- Fine-tuning waste
- Serial waste

Eliminating Replacement Waste

If we take a close look at changeover operations, we usually find that a lot of the work involves fastening and unfastening objects such as:

- Loosening and tightening bolts
- Setting up or removing supports or blocks
- Setting up or removing dies and blades
- Attaching or removing air hoses
- Attaching or removing chutes

None of the above fastening and unfastening procedures adds any value to the workpiece or product. Therefore, it is best if we can somehow eliminate them.
I suggest taking the following approach in improving changeover operations.

Step 1: Can we do without this part of the changeover procedure?
Our first question should be as simple as, “Why do we have to replace this die (or blade)?” This line of questioning may well lead to a standardizing or function-combining improvement that will eliminate this particular replacement operation.

Similarly, we may find a way to avoid having to use bolts altogether if we ask, “Why do we have to tighten and loosen bolts?”

Step 2: Can we reduce the number of times this operation must be done?
For example, we might ask, “Why does this die have to use eight bolts?” If we can reduce the number of bolts, we reduce the number of bolt tightening operations. When numerous bolts are being used, we should always ask whether all of them are really necessary.

Step 3: Can we reduce the time spent on this operation?
The most passive kind of improvement we can make is to keep operations the way they are and just reduce the amount of time spent on them. For instance, we can reduce the amount of time spent screwing in bolts and machine screws.

Other examples of alternatives for removing waste are:

- **Improving an operation by removing the need for certain tools.**
 Wrenches, screwdrivers, and hammers are just some of the tools commonly used in changeover operations. We can reduce the number of tools that must be picked up, handled, and put back by finding ways around them or by combining their functions into single tools. Figure 11.13
shows how the need for tools can be eliminated for certain bolt-tightening operations.

Reduction of bolt tightening

Bolts are our enemies. The fewer, the better. If we cannot reduce their number, we may at least be able to reduce the number of turns needed to tighten or loosen them. Turning bolts is a big waste of time. Only the final turn really performs the function of tightening or loosening the bolt; all the other turns are pure waste, just turning the screw threads through the nut. Figure 11.14 shows an example of a bolt that protrudes well past the nut. In general, a bolt is secure after about three turns, so there is no need for such a long bolt.
Improvement that eliminates the need to remove nuts and washers.

Figure 11.15 shows an improvement that enables dies to be changed without having to completely remove nuts and washer from bolts. Before this improvement, it took 200 seconds to remove the nuts and washers from the bolts each time the die was changed. After the improvement, the slip-off bolt allowed workers to change dies by just slightly loosening the nuts. This reduced the die replacement time to just 30 seconds.

Improvement that eliminates the need to remove bolts.

Figure 11.16 shows before and after illustrations of a bolted-in drill bit. Before the improvement, workers had to completely remove six bolts from the drill in order

![Diagram of before and after improvements with detailed descriptions of steps and time required for each step.]

Figure 11.16 Eliminating the Need to Remove Bolts.
to exchange the drill bit. Exchanging the bit took about 240 seconds, including the time spent in removing the bolts and old bit and fastening the bolts and new bit.

After the improvement, the bolts had larger holes drilled next to them, connected by narrow slots. When the bolts are loosened just a couple of turns, they can be moved into the slot, where they remain loose while the bit is being exchanged. This improvement reduced the total bit replacement time to just 40 seconds.

One touch tool bit exchange. Figure 11.17 illustrates an improvement that made tool bit exchange on an NC lathe a one-touch operation. Before the improvement, the workers had to remove all of the bolts, then remove the tool bit and its holder and replace it with another tool bit and holder.

After the improvement, the tool bits were made detachable from their holders and all the holders were redesigned in a standard size. This enabled the workers to change only the tool bits while leaving the standard holder bolted to the base. The complete elimination of bolt loosening and tightening reduced the tool bit replacement time from 50 minutes to 3 minutes.
Improvement for boltless die exchange

Figure 11.18 illustrates an improvement that enables die exchanges to be made without using any bolts. In this case, the boltless fastener is a common hand-tightened vice. The operator just releases the vice lever to loosen the die for replacement. Once the operator has the new die in place, he or she just pulls the vice lever back to clamp the die into the standard position.

Removing Fine-Tuning Waste

How often I have heard factory workers mutter something along the lines of, “Hey, nobody can get that machine to work right except that guy over there.” What happens to flexibility and reliable productivity in a workshop when only one person is capable of performing certain changeovers and adjustments? Does the procedure really have to be so difficult or the machine so quirky that it takes an “old hand” to handle it? Does it have to depend on a special, experienced worker and is it really so difficult to standardize?

The most important question of all is whether the need for fine-tuning is preventable. In most cases, fine-tuning is needed simply because the standards are not being strictly adhered to. Workers often set machines up according to what
“looks” or “feels” right, then they make a trial run and adjust the machine until it works correctly and turns out a product that matches the defect-free sample.

Fine-tuning can include the following types of operations:

- Adjusting die positions
- Adjusting the die-shut height
- Adjusting the fastened height
- Adjusting feed roller width and height
- Adjusting conveyor width

While all appear to be necessary operations, none of them in fact add any value to the product. Adjustments do not always have to exist, no matter how necessary they may seem. Let us turn to a few examples of improvements that eliminated such fine-tuning operations.

Protruding jigs eliminate the need for setting positions manually.

Figure 11.19 illustrates an improvement that did away with the need for manual adjustment of dies following changeover at a pressing machine. Before the improvement, the press operator had to use his eyes and intuition to center the die within a bolster crossed by vertical and horizontal lines. This was not always easy to do on the first attempt, and subsequent manual adjustments were often needed.

After the improvement, the bolster contains two protruding jigs (stopper pegs) that fit into notches on the die to ensure proper positioning.

Spacer blocks eliminate the need for manual positioning.

Figure 11.20 shows how spacer blocks were used to eliminate workpiece length positioning prior to cutting. Before the improvement, the operator would visually adjust a movable limit switch block to the particular
length setting for each model. After the improvement, the movable block now has a simple hand-turned clamp lever that eliminates the need for wrenches or other tools. Furthermore, model-specific spacing blocks are used to eliminate the need for workpiece length positioning. As a result, the changeover time was reduced from 6 minutes to just 12 seconds.
Spacer blocks eliminate the need for manual dial positioning.

Figure 11.21 shows how spacer blocks can be used to eliminate the need for manual dial positioning. Before the improvement, inspectors used dial gauges to check product quality. Since different product models had different lengths, the inspectors had to adjust the dial position whenever a model change occurred.

After the improvement, model-specific spacer blocks were made for the inspectors to insert, when necessary, under shorter product models. This eliminated the need to adjust the dial position, which takes a lot longer than switching spacer blocks. To prevent errors due to selecting the wrong spacer block, the blocks were color coded—a technique promoted by JIT’s 5S campaign.

Standardization of die height
There are three types of standards used for changing die sets:
1. Matching bolster center with die center (X and Y axes). We call this the “centering position standard.”
2. Matching die with the die-shut height (Z axis). This is the “die height standard.”
3. Setting the height (Z axis) of the laterally (X and Y axes) positioned and fastened workpiece. This is called the “fastened height standard.”

Figure 11.22 shows how by standardizing the height of the dies, one workshop was able to eliminate the need for shut height adjustment.

Before the improvement, each die had a different height, which meant that the operator had to adjust the die-shut height. Since the die-shut had to be exact for each die, it often took over 20 minutes of adjustments to get it right.

The improvement was simply to make all die sets the same height. Specifically, bases with the same fastening hardware were added onto all of the shorter die sets. To equalize the die set heights, spacer blocks were added to all the shorter die sets to bring them up to the tallest set’s height. This effectively eliminated all that trial-and-error adjustment of the die-shut height, reduced changeover time to just two minutes, and ensured defect-free products the first time.

Eliminating Serial Operations

From the perspective of operational methods, changeover operations can be broken down into serial operations and
Serial operations are operations done in order from start to finish by one worker, and the total changeover time is simply the sum of the time spent by that worker on the series of operations.

Parallel operations involve splitting up the changeover operation into two or more segments, which are performed simultaneously by several workers. In this case, the changeover time is the amount of time required for the longest segment of the changeover operation.

Figure 11.23 shows an example of parallel operations in the replacement of a transfer machine’s blades. Before the improvement, one person performed the entire seven-step blade replacement operation as a serial operation. The total time required for this serial operation was calculated: Step 1 (3 minutes) + Step 2 (6 minutes) + Step 3 (6 minutes) + Step 4 (6 minutes) + Step 5 (3 minutes) + Step 6 (3 minutes) + Step 7 (5 minutes) = 32 minutes.

After the improvement, three workers worked simultaneously instead of one worker working alone. Worker A did Step 1 (6 minutes) and Step 2 (6 minutes), for a total of 12 minutes. Worker B did Step 3 (6 minutes) and Step 4 (6 minutes), for a total of 12 minutes. Worker C did Step 5 (6 minutes) and Step 6 (6 minutes), for a total of 12 minutes. The changeover time in this case is the amount of time required for the longest segment of the parallel operations, which is 12 minutes.
(6 minutes) + Step 5 (3 minutes) + Step 6 (3 minutes) + Step 7 (5 minutes) = 32 minutes.

After the improvement, the blade replacement changeover was reorganized into 5 steps and was worked into the overall workshop schedule so that instead of one worker performing it as a serial operation, three workers each performed about a third of it.

In other words:

- Worker A did step 1 (6 minutes) and step 2 (6 minutes), for a total of 12 minutes.
- Worker B did step 3 (6 minutes) and step 4 (6 minutes), for a total of 12 minutes.
- Worker C did step 1 (6 minutes) and step 2 (6 minutes), for a total of 12 minutes.

The total changeover time was therefore 12 minutes.

Improving External Changeover

So far, we have improved changeover by turning as much internal changeover into external changeover as possible and by improving the remaining internal changeover. These improvements should have resulted in a significant reduction in changeover time due to less stopped time for the machines, correspondingly higher capacity utilization rates, and more frequent changeovers (due to faster production turnaround).

However, we should not stop with improving the remaining internal changeover. That would leave a storehouse of external changeover waste safely hidden away. The key to maximizing the efficiency of changeover operations is to bring all possible improvements to both the internal and external changeover parts.

The key to improving external changeover operations is the 5S strategy, and particularly the two most basic of the 5S’s, proper arrangement (*seiri*) and orderliness (*seiton*).
Proper Arrangement and Orderliness
Applied to Die Storage Sites

Even modest-scale factories usually keep a stock of 10 or 20 dies on hand. As the product diversification trend continues, factories are likely to need increasingly large assortments of dies. Usually, the dies have sharply different frequencies of utilization. If there are 10 dies, two or three will be used 70 or 80 percent of the time, while the remaining seven or eight dies will be used only for special-order products.

Under such conditions, we might best begin making improvements by finding out just which dies are used how often, then storing the dies so that the more they get used, the closer they are kept to the people who use them. This alone will eliminate the need for a conveyor, and conveyor waste is a major form of waste.

Once we have figured out where the dies should be kept, we need to implement the “signboard strategy.” We can post signboards that indicate exactly where the dies go, such as by outlining the die shapes in their storage sites to make it obvious where all the dies should be placed.

Figure 11.24 shows an example of a properly arranged and orderly die storage site and signboard. The signboard's location and item indicators are the same as for in-process inventory signboards and serve the same function of making

![Figure 11.24 Die Storage Site Using Signboard Strategy.](image-url)
“what goes where” obvious to everyone. To enhance orderli-
ess, the dies are also grouped and color-coded according to
which models and machines they are used for.

Carts Reserved for Changeover

Factories that make large equipment items, such as NC
machines and printing presses, tend to use a lot of cranes,
hoists, and other kinds of large conveyance equipment.
These cranes, hoists, and the like are used to move every-
thing along, including tiny items, such as small jigs or work-
pieces. In such cases, workers end up spending a lot of time
just waiting to use the busy conveyance equipment. To avoid
such problems, the factory should be able to switch from
cranes and hoists to more agile and economical conveyance
deVICES, such as carts and conveyor belts.

Similarly, in press factories, we can find people using fork-
lifts to move boxes full of small dies. As with cranes and hoists,
people waste time looking or waiting for an available forklift.

Big, expensive conveyance devices like forklifts, cranes,
and hoists must be shared among the various stations on
the production line. Naturally, there will be plenty of times
where the demand for such devices exceeds the current
supply. It may help to think of the conveyance devices as
another process on the line. When the flow of goods goes
from several processes to just one process (a shared convey-
ance device), the flow turns to a flood. The result is idle time
waste and retention waste.

So, what can be done? There is really only one answer:
Conveyance must become part of flow production or, to put
it more succinctly, we need to establish “flow conveyance.”
One of the best ways to integrate conveyance into a flow
production system is by establishing specialized carts and
conveyor belts that are reserved for certain uses.

Figure 11.25 shows a specialized cart that is reserved solely
for changeover operations. As can be seen in the figure, this
cart is equipped with two roller boards for sliding old and
new dies off and onto bolsters during die changeover operations. All of the jigs, measuring instruments, vices, and other tools needed for changeover operations are kept right on the cart’s shelves.

External Changeover: Drill Bit Replacement

Figure 11.26 shows an external changeover operation for changing drill bits in a machining center. Before the improvement, the worker stopped the machining center to set-up the drill bit. After the improvement, workers used a specially built cart for drill bit replacement, which they preset with various drill bits as an external changeover operation so that when it is time to change drill bits, they can wheel the cart right over to the machining center.

Seven Rules for Improving Changeover

In the heyday of large-scale mass production, production engineers used to agree that “the fewer changeovers, the better.”
However, in today’s market—where large product variety, small output volumes, and short delivery are all in demand—many factories are having to make frequent product model changeovers to match production to current market needs.

When market needs change, the factory must have the courage to improve its long-cherished changeover system. In years of improving changeovers, I have discovered certain “correct ways to do things” that appear valid in most every case. In this manual, I have presented these as the “Seven Rules for Improving Changeover.” We will look at them one by one.

Rule 1: Changeover Begins and Ends with the 5S’s

Changeover improvement begins with the 5S’s because all improvement begins with the 5S’s. In fact, thorough implementation of the 5S’s is especially essential for successful improvement of changeovers. Factories that do a very poor job in changeover operations can find their changeover time
cut in half very easily once they have established the 5S’s. The half that they lose is all the waste that arises from searching for things, distinguishing things, using things inefficiently, and moving things around.

The 5S’s are the very foundation for changeover improvement, and the most important of the 5S’s are proper arrangement (seiri) and orderliness (seiton).

Salient Points

- **Discard.** Get rid of everything that is not needed. If in doubt, throw it out. That goes for any kind of item or equipment. Use the red tag strategy to identify unneeded items. (For a description of the red tag strategy, see Chapter 4.)

- **Indicators.** Put up signs showing exactly where jigs, tools, in-process inventory, and other things belong. Use the signboard strategy to do this thoroughly. (For a description of the signboard strategy, see Chapter 4.)

- **Color-coding for orderliness.** Sort out items into model-specific or machine-specific groups and color code the items by group.

- **Tool consolidation/elimination for orderliness.** Ask why each tool is necessary and see if tool functions can be consolidated or certain tools eliminated while still getting the job done.

- **Specialization.** Develop specialized carts, tools, and other equipment that will improve changeover efficiency.

Rule 2: Change Internal Changeover into External Changeover, Then Improve the Remaining Internal Changeover

Many of us tend to count changeover time by including only internal changeover time. Instead, we should distinguish between internal and external changeover, and try to shift as much internal changeover as possible into the realm of
external changeover. After that, we are ready to start improving the remaining internal changeover. Any improvements made in internal changeover at this point will bring valuable results indeed.

Salient Points

- **Analyze current changeover operations.** Use a changeover operations analysis chart to flush out and elucidate all of the things that go into current changeover operations.
- **Ask “Why?” again and again.** Ask why each segment of the internal changeover operations must remain a part of internal changeover operations. See if it can be changed to an external changeover operation.

Rule 3: Bolts Are Our Enemies

When it comes to changeover improvements, bolts are Public Enemy No. 1. Whenever we see them, we should start thinking of ways to do without them. If we cannot get rid of them, we may at least be able to reduce their numbers or redesign them so that they can be sufficiently tightened or loosened with just one turn. This will help us eliminate waste caused by needlessly long bolts.

Salient Points

- **Take the “boltless” approach.** Bolts are rarely necessary. More desirable substitutes include autoclamps (QDC), fasteners with levers on top, cassette style snap-in components, knock pins, and the like.
- **Use fewer bolts.** If the equipment is bolted together by 12 bolts, see if it can be reduced to 10 bolts. Always ask how many bolts are really needed.
- **Make bolts shorter.** Do not use bolts that are any longer than needed. Only the last turn of the bolt or machine screw does the actual fastening and only the first turn does the loosening.
Eliminate the need to completely remove bolts. There are plenty of ways—such as using sliding bolts, bolts with side-slots, or bolts with C washers—in which bolts can be loosened sufficiently without being completely removed. This saves time wasted in putting removed bolts away, finding them again, and inserting them.

Rule 4: If You Have to Use Your Hands, Make Sure Your Feet Stay Put

A sure sign of a poorly planned changeover operation is when workers must walk here and there to perform it. Walking around in search of a wrench or a die or a cart is all a big waste of time. Remember, each second of walking is a second of wasted time. If a worker must take 20 steps to pickup a tool, that is 20 seconds of waste. Or rather, 40 seconds of waste: 20 seconds of waste to get the tool and another 20 seconds of waste to put it back. The changeover time gets longer with each step the changeover operators take.

Salient Points

- **Specialize.** Develop specialized carts and tools that will be used exclusively for changeover. Keep all tools laid out in an orderly manner and within arm’s reach throughout the changeover operation.

- **Keep all switches close at hand.** The rule against walking during changeover operations applies also to all switches and control panels used during such operations. Move them closer, even if that means modifying the equipment.

- **Establish parallel operations.** Leaving a changeover operation to just one worker not only takes longer (since the changeover steps must be done sequentially), but often requires the worker to walk around the equipment to make the necessary changes. We can save a lot of changeover time by using several workers and assigning
standardized segments of the changeover operation for them to do at the same time in parallel.

Rule 5: Don’t Rely on Special Fine-Tuning Skills

One of the strongest-held obsolete notions about changeover operations is that the equipment always requires some fine-tuning after changeover. Not only that, but often the fine-tuning is so difficult that it takes “an old hand” to do it. Factory people accept this situation as natural and inevitable. There is no sense in paying the price of relying on certain individuals when adjustments can be standardized so that anyone can do them or, better yet, can often be eliminated altogether by strictly adhering to changeover standards.

Salient Point

- *Abolish fine-tuning.* We must give up the notion that fine-tuning is necessary. It never has been necessary and never will be if we take measures to abolish it.

Rule 6: Standards Are Standard; They Are Not Flexible

One thing that often leads to fine-tuning after changeover is the attitude that changeover standards can be “fudged” a little. Standards usually prescribe specific X, Y, and sometimes Z positions for dies, blades, fasteners, and other new parts set-up during changeover operations. If the changeover work is off-standard, the whole factory is off-standard. Standards are no longer standards if they can be interpreted a little differently during each changeover operation. Standards are meant to be kept, not fudged.

Salient Points

- *Avoid having to make position adjustments.* Use stoppers, notches, centering cross lines, spacer blocks, or
other devices that enable components to fit snugly into their correct positions to avoid having to “fiddle” around with them.

- *Avoid having to make height adjustments*. Different dies or other components often have different heights, which means the press or other equipment must be adjusted for each changeover. Again, we can use height adjusters, such as spacer blocks, uniform bases, and stand-alone fasteners, to make component heights uniform to eliminate the need for height adjustments as part of internal changeover operations.

Rule 7: Standardize All Changeover Operations

A common myth among factory workers is that changeover is an independent kind of work in which each individual worker displays his or her “know-how” and familiarity with the equipment. This belief is hardly conducive to standardization, so we need to recognize it for what it is and discard it.

If standardization is impossible, improvement is impossible. Keeping that simple phrase in mind will help us make progress as we work to improve changeover operations.

Salient Points

- *Do not spend money on improvements*. Do not leap toward expensive solutions to improve problems. The more money we spend, the less we will use our ingenuity to solve these problems.

- *Make improvements right away*. Once someone has come up with an improvement idea, the time to act on it is *now*. Why now? Mainly because immediate action is most likely to inspire ingenious ideas and is least likely to involve expensive solutions. Right away does not mean “later today” or “later this week.” It means as soon as the improvement idea arises.
I have made a separate listing of the “Seven Rules for Improving Changeover.” Please feel free to photocopy this list and post it wherever it may serve as a reminder.

Seven Rules for Improving Changeover

- **Rule 1**
 Changeover Begins and Ends with the 5S’s.

- **Rule 2**
 Change Internal Changeover into External Changeover, then Improve the Remaining Internal Changeover.

- **Rule 3**
 Bolts Are Our Enemies.

- **Rule 4**
 If You Have to Use Your Hands, Make Sure Your Feet Stay Put.

- **Rule 5**
 Don’t Rely on Special Fine-Tuning Skills.

- **Rule 6**
 Standards Are Standard; They Are Not Flexible.

- **Rule 7**
 Standardize All Changeover Operations.
Quality Assurance

Quality Assurance: The Starting Point in Building Products

As discussed in earlier chapters, the essential meaning and purpose of JIT production is to serve customer needs by making “only what is needed, only when it is needed, and only in the required amount.” Why, then, do we also speak of JIT as “ideas and techniques for the total elimination of waste”? Eliminating waste cuts costs and lower costs help serve customer needs for lower prices.

JIT puts so much emphasis on cost-cutting through waste elimination that JIT leaders can easily find themselves putting quality assurance considerations on the back burner. But they should never make quality assurance anything less than a top priority.

Quality assurance is essential to both JIT production and large-scale mass production. Quality is the most fundamental characteristic of production, no matter what production system we use.

In JIT, we are not so much concerned with low-defect targets, such as a certain number or percentage of defects per month. Instead, we look at each defect as it occurs and ask, “Why did that happen?” until we find the defect’s root cause. Then we go after that cause with an improvement that will prevent the same defect from happening again.
Let us always keep the following points in mind:

1. Always follow standard operations.
2. Establish “one-piece flow” whenever possible to minimize manufacturing lead-time.
3. Stop the line whenever a defective item is produced.
4. Act immediately to make an improvement that goes right to the source of the problem.
5. Remember: “Quality is built into products at each process.”

Figure 12.1 illustrates JIT’s five levels of quality assurance achievement. Where does your factory rank among these five levels?

JIT’s Five Levels of Quality Assurance Achievement

Level 1: Factory Ships Defective Products

At this level, the factory either does not use inspectors or uses them only superficially, so that there is little or nothing to stop defects from being produced and shipped to customers.

At this level, the physical presence of inspectors means nothing.

Factories that maintain a daily flow of defects going to customers have no choice but to deal with defectives as they are exposed by customer complaints. This is a very laborious way of dealing with defectives and is bound to put the factory into the red.

This may sound facetious, but the only way to totally eliminate defects at a Level-1 factory is to totally shut it down.

Level 2: Factory Does Not Ship Defective Products

When factories are having a hard time preventing customer complaints, management may decide to boost the number of inspectors if the company can afford the extra costs.
At this level, the inspectors’ job is to sort the defective products from the good ones. More money for inspection therefore simply means more thorough sorting. Completely thorough sorting will effectively prevent customer complaints, but it does nothing at all to reduce the factory’s production of defective goods.
The best we can say about a factory that has crawled out of the depths of the first quality assurance level to reach this level is that it saves itself the trouble, expense, and bad publicity of dealing with customer complaints. Not really worth a round of applause, is it?

The motto at this level might be “Lots of defectives but no customer complaints.”

Naturally, all those defectives and inspectors are costing the factory a fortune. The factory’s long-term survival is still in doubt.

Level 3: Factory Is Reducing Defects

When I enter a factory that has achieved Level 3 in quality assurance, I usually find some telltale signs of it, such as big banners proclaiming “Support the Zero Defects Campaign,” or something else to that effect. Right away, one gets the impression that the factory managers are trying to heighten awareness throughout the company that a zero-defect campaign is in force.

The kind of inspection carried out at this level is called “information-based inspection.” When a defective unit is found at the inspection process, the inspectors inform the process that produced the item, and thus the inspection process helps encourage workers to make improvements that will prevent the defect’s recurrence.

The motto at this level is, “Defectives produced in one production run are not repeated in subsequent production runs.”

The main ammunition in reducing defects is not so much extra inspectors as it is the application of IE improvement methods and the training of line workers in some of those methods.

Level 4: Factory Processes Do Not Send Defectives Downstream

The factory has not yet gotten past creating defective products. Still, whenever a defective is produced, the workers do their best to nip the problem in the bud and prevent further
defects. Accordingly, the motto at this level is, “When defec-
tives are produced at one process, they do not get passed to
the next process.

At this level, the process operators themselves become
inspectors, checking the quality of every item they produce.
W call this kind of arrangement “independent inspection.”

If the inspection work is centered on machines and tools,
the processes need to have automatic inspection devices or
poka-yoke devices. If the inspection work is mainly work
done by the operators, their inspection operations need to be
included in the set of strictly enforced standard operations.

Level 5: Factory Processes Do Not Create Defectives to Begin With

Some people pass off the idea of zero defects as being unreal-
istic. Parroting an old phrase, they say, “To err is human, so
there will always be at least a few defects.” Such people do
not understand the Zero Defects philosophy.

To understand what “zero defects” is all about, we need to
distinguish between errors and defects. They are *not* the same
thing. Defects are results and errors are the causes of those
results. We can say that the Zero Defects philosophy begins
with this crucial distinction between errors and defects.

No one will argue with the truism that “to err is human.”
But neither should anyone oppose the idea that while to
err is human, the ability to prevent errors from leading to
defects is also human. This is the idea that serves to inspire
zero-defect campaigners.

Feet firmly planted in this optimistic concept, we can work
confidently to minimize human errors and, better yet, come
up with ways to prevent people from making errors in the
first place. This latter strategy is like killing two birds with
one stone.

At the fifth level, inspection goes all the way back to the
source of defects. Factories at this level are ready to accept
the challenge of the “three zeros”: zero defects, zero waste, and zero delays.

Structures That Help Identify Defects

Defects as People-Made Catastrophes

In any factory, the essential ingredient is people. And whenever we have people, we will have mistakes. Mistakes can lead to defects and defeat. No matter how much we wish to avoid making mistakes, sooner or later we will make one.

There are basically two ways we can look at human errors. The first approach looks at mistakes as natural and inevitable. The idea is that “to err is human” and it’s only natural that people will make mistakes now and then. The second approach looks at mistakes as evil and declares, “People make mistakes, but they are also able to reduce their mistakes to almost zero.”

The measures we take to deal with the possibility of mistakes differ greatly depending upon which of the above two approaches we identify with. The first approach affirms the human tendency to err. Naturally, if errors are accepted as natural and allowed to occur freely, the factory must take after-the-fact measures in dealing with defects arising from errors. People end up pouring effort into keeping defective goods from being passed downstream to subsequent processes or, at least, to the customer. This approach requires a large number of inspection personnel and an extensive “defect filter” just before the shipment stage to sort out defective products.

The second approach challenges the inevitability of errors and takes a positive attitude toward focusing attention and efforts in trying to prevent them. This approach goes directly to the source of errors with improvements wrought via education, cultivation of greater discipline, and the establishment of flow
production, standard operations, and other error-preventing measures. The idea is to immediately alert supervisors to errors and to conditions that facilitate errors.

So, which approach is better? Obviously, the second one. In taking this approach, we must remember to aim our criticisms at the errors themselves and not at the people who make them. Another important thing is to build a strong commitment among the factory employees to prevent errors and achieve the zero-defect goal.

The springboard for taking anti-error measures all the way back to the source of errors is the realization that no matter how much effort and how many resources we invest in product inspection, mistakes will occur and lead to defects.

Defects are man-made catastrophes. If we can remember that, along with the motto “Quality is built into products at each process,” we can work in earnest to truly eliminate defects.

Misunderstanding Found in Inspection

The following happened at a certain factory’s quality assurance meeting.

The factory’s managers found themselves unable to slow the flow of product quality complaints from customers. They had hung banners proclaiming “Quality First,” “Quality Assurance Month,” and other messages intended to raise everyone’s quality-consciousness. But it ended in failure. Customer complaints remained as numerous as ever.

The factory superintendent was not happy. He bellowed at the others attending the quality assurance meeting, “Double the inspection staff!” Apparently, the superintendent had decided it was time to pull out all the stops and spare no expense in weeding out defective products before they are shipped to customers. Noble as it sounds, this approach is a big mistake.

If we look carefully, we can find a major misperception at work here. The superintendent has failed to make a clear
distinction between defects and customer complaints. The two are indeed very different matters.

Factories build things at processes in workshops. Obviously, the workshop has no intention of making defective items. Nevertheless, when the products are finished, some containing defects built in at earlier processes are shipped off to customers. The defects go unnoticed until the unlucky customers who receive these products try to use them.

Any defect in a product exists in the product from the moment it is built in. Usually, the defect is not recognized right away as such. Often, it is only the person using the product (the customer) who notices the defect. When that happens, the customer gets confused, disappointed, and perhaps even angry, and sends in a complaint to the manufacturer or distributor.

To put it another way, defects in products are latent when produced and are made apparent when the products are used.

Beefing up the inspection process is one way to reduce the number of customer complaints. But often, the latent defects are not apparent enough when the products are merely inspected. They may become apparent only after the product is put to regular use. (See Figure 12.2.)

In such cases, we cannot prevent customer complaints unless we undertake defect correction and prevention measures closer to the source of the defects.

Figure 12.2 The Relationship between Defects and Inspection.
The following are three principles that should guide our efforts at nipping defects in the bud.

Principle 1: Don’t Make Surplus Products

At the most basic level, we can say that simply making products creates opportunities for creating defects. Therefore, we can say that making extra products leads to extra defects.

In other words, factories should manufacture only the amounts needed by the customers. Making more than that leads to defects, and for several reasons. First of all, having surplus goods causes some goods to be retained as warehouse inventory. Having warehouse inventory requires stockpiling and conveying the warehoused goods. Finally, stockpiling and conveying inevitably leads to more dents and damage in the products during handling. This alone is reason enough to support the Just-In-Time philosophy.

Principle 2: Simplify and Facilitate Production Operations

While in theory the best way to prevent defects is to refrain from building any products at all, this is obviously not the answer.

While making the minimum number of required products, we should not only find ways to simplify the production process itself, but also, within that context, find ways to simplify and facilitate the handling of the process.

Two key techniques for doing this are *poka-yoke* (or mistake-proofing, described later in this chapter) and standard operations (described in Chapter 13).

Principle 3: Once You Make a Product, Use It

The person best able to discover defects in a product is the product’s user. Every manufacturer of products should be well aware of this fact.

Obviously, no factory worker thinks, “Let’s make some defective products.” Defects are always made by mistake and thus often go unnoticed.
Quite often, the defect is not noticeable to anyone except the user.

The user can be the end user (customer) or someone downstream in the factory, such as the assembly line worker who finds that defective semifinished product A will not fit together with defect-free semifinished product B to make product C.

Still, the best discover of defects—even minuscule defects—is the end user. This is because the end user puts the product to use more frequently and in more ways.

It follows that the most effective way to minimize defects is to make some use of the workpiece or product as soon as it is processed or assembled. The two best methods for this are flow production and multi-process operations (described in Chapters 5 and 6 respectively).

When we make mistakes during the manufacturing of products, those mistakes will remain hidden if we process and pass along the products in lots (as in “shish-kabob” production). By the time the defect is discovered, who knows how many defective units have been made?

So, let every production line worker remember this pair of truisms: “The best discoverer of defects is the user” and, “The best expert in creating defects is the operator.”

Factors behind Defects

All kinds of defects get produced in factories. Holes get drilled or punched in the wrong places, workpieces get incorrectly processed by damaged drills or saws, assembly workers overlook a component or two—the list is endless.

Even if everyone in the factory hates defects like the devil, they will still keep making defective goods.

When defects occur, it is only natural that factory managers and workers start asking simple questions, such as, “Why did that defect occur?”
To better understand how defects get made, let us first break the typical manufacturing company down into nine basic elements. It so happens that seven of these elements start with the letter M. It may be helpful to remember them as the “7M’s plus E&I.” Figure 12.3 lists these nine elements.

For factories, the most important functional elements are Man/Woman, Material, Machine, Money, Method, and Information. On a day-to-day basis, the essential elements for factories are Man/Woman, Material, Machine, Method, and Information.

Specifically, the factory first receives operation instructions (Information), then procures supplies of parts and materials (Material), sets up the machinery and other equipment (Machine), and employs operators (Man/Woman) to manufacture products using standard procedures (Method).

These five elements (4M’s plus I) are where defects most often occur in the factory. Let us look at these elements one by one.

Element 1: Man/Woman

People make mistakes for all sorts of reasons, including fatigue, negligence, getting the sequence of operations wrong, attaching the wrong component, and so on.

Now, I would be the first to admit that, as the saying goes, “to err is human.” If, however, we do nothing to reduce our mistakes, we will keep making them forever. The important thing is to remember not only that people are able to make mistakes, but also that people are able to reduce the number of mistakes they make.

Factories could not exist without people. The element Man/Woman is thus the central element. The other key elements—Material, Machine, and Information—are relatively peripheral. Figure 12.4 illustrates this concept.

After all, it is people that create and process information and that move materials around. It is also people that build,
<table>
<thead>
<tr>
<th>7M’s plus E&I</th>
<th>Description</th>
<th>Importance to factory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>Directors, managers, sales people, operators, etc.</td>
<td>◯</td>
</tr>
<tr>
<td>Material</td>
<td>Products, assembled parts, parts, materials, raw materials, etc.</td>
<td>◯</td>
</tr>
<tr>
<td>Machine</td>
<td>Buildings, warehouses, machines, conveyance equipment, etc.</td>
<td>◯</td>
</tr>
<tr>
<td>Money</td>
<td>Management techniques, sales methods, production methods, etc.</td>
<td>◯</td>
</tr>
<tr>
<td>Method</td>
<td>Market surveys, product planning, price strategies, sales promotion, etc.</td>
<td>△</td>
</tr>
<tr>
<td>Management</td>
<td>Efficient management of the other six “M”s</td>
<td>◯</td>
</tr>
<tr>
<td>Engineering</td>
<td>Basic technologies, applied technologies, production technologies, etc.</td>
<td>◯</td>
</tr>
<tr>
<td>Information</td>
<td>Customer information, order data, production data, distribution data, etc.</td>
<td>◯</td>
</tr>
</tbody>
</table>

The double circles indicate highest degree of importance and the triangle the lowest degree

Figure 12.3 Nine Basic Elements in Manufacturing Companies (7M’s plus E&I).
install, and operate machines. In the manufacturing world, people are the foundation for just about everything. Accordingly, any error reduction must rely heavily on factory-wide participation in programs that continually foster education, training, and management by objectives.

Element 2: Material

Imagine a newlywed couple who has been enjoying their most important wedding gift, a set of furniture with a fancy brand name, only to discover during the hot, humid summer that bugs are infesting the dresser drawers. They and other customers complain loudly to the furniture store, who in turn bombard the manufacturer with complaints and warranty claims.

To avoid this problem in the future, the manufacturer is searching for a more insect-resistant material for its furniture. The manufacturer receives all of its materials and assembly parts from an independent supplier. They find it hard to get the supplier to understand their need for stricter specifications concerning resistance to insect infestation and cannot reach an agreement to purchase materials that meet those stricter specifications. The supplier seems intent on doing things its “own way.”
Obviously the furniture manufacturer must find a way to gain understanding and achieve improvements from the supplier. The key to success in doing this is to think of the supplier as just another process in the furniture production line, and to work just as hard to integrate that process as all the other processes that happen inside the furniture factory.

Element 3: Machine

Factory managers must never allow themselves or their subordinates to become complacent in the belief that “the machines will do a great job if we just let them do the work.” Like people, machines can make mistakes. Reliability is a temporary feature in any machine.

Sometimes one of the machine’s functions starts deteriorating and produces defective goods. Older machines tend to lose their precision very quickly. Other machines are difficult to retool and require special attention for correct maintenance and replacement of jigs, drill bits, or blades.

The factory workers who still believe that manufacturing machines should just be expected to turn out products in rapid succession are dangerously deluded. They need to rid themselves of that delusion. And while they are at it, they should also relieve themselves of the burden of pouring fruitless hours of labor into maximizing equipment capacity utilization rates. The question of how much equipment capacity to utilize should be answered by customer orders, not by the machine’s potential capacity.

So much for wrong approaches: What is the right one?

The best approach is to develop devices that can be built onto or in the machine to automatically stop the machine’s operation upon detecting defects (or even potential defects). In JIT vocabulary, we call this approach “Human Automation” or “Automation with a Human Touch.”

The old-fashioned types among us need to do a complete about-face and replace old ideas. “Our widgets sell like pancakes, so let’s turn out as many as possible,” should be
replaced with a more realistic concept, such as, “We cannot afford defects, nor can we afford to make more than the market will support.”

Lastly, we also need to turn away from an emphasis on the equipment’s capacity utilization and instead focus on the degree of possible utilization. That means asking how consistently can we keep the equipment in working order.

Element 4: Method

The equipment layout, flow of goods, and operational methods differ so much between Toyota and Nissan factories, it is hard to believe they are both producing automobiles.

The way a manufacturer makes its products says a lot about the manufacturer’s history and philosophy. Once a manufacturer gets set in its way of making things, its employees begin to loathe any suggestion of radically changing the factory’s production methods to suit a big change in the business environment.

When manufacturers design their production systems with an emphasis on large lots and maximum output, we call it “product-out production.” Their main concern is to get the product out. By contrast, when manufacturers focus on a level production flow and output based on market needs, we call it “market-in production.” They bring the needs of the market into the factory.

It should be obvious by now which type of production is better for today’s market environment. Along with establishing “market-in production” throughout the factory, we need to implement and enforce standard operations among all factory workers.

We cannot do any of this, however, until we succeed in changing the way people think about manufacturing.

Element 5: Information

The spoken word is like software in a computer; we can never see it, but it makes everything happen—including
mistakes. Likewise, instructions given orally can be misunderstood, sometimes with disastrous consequences. There is an expression in Japanese to the effect that “the spoken word is a weapon that leaves no trace of itself.” If what you have to communicate is important, be sure to put it in writing.

Of course, that can create other problems. When everything gets put in writing, we soon have a factory full of memos, vouchers, notices—a paper trail too voluminous to read.

Another problem is that writing things down does not guarantee error-free communication. Poorly explained or poorly understood information becomes poorly written or poorly read information. Naturally, the more mistakes in communication we have, the more product defects we can expect to encounter.

Nonetheless, the first thing to do is to avoid oral instructions. Factories instead need written instructions that are brief and to the point. This is where computers make an excellent tool for the systematic processing and management of information.

Another way to prevent communication errors is JIT’s “visual control” approach, which uses signboards, kanban, and other tools to make operation instructions and other information obvious to everyone.

Figure 12.5 groups together the five elements of daily manufacturing activity just mentioned, the two main approaches people take to these elements, the kind of action that follows each approach, and the JIT improvement measures that correspond to JIT-oriented approaches.

The ideas presented in the figure include two main points:

- Point 1: Don’t Give Up before You Start!
 Taking a fatalistic attitude and saying, “Well, nothing can be done about errors since people naturally make mistakes,” or, “Everybody’s different, so different workers will inevitably do the same tasks differently,” is tantamount to giving up on improvement before we even start.
<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>APPROACH</th>
<th>ACTION</th>
<th>JIT MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN/WOMAN</td>
<td>Human errors must be accepted as inevitable</td>
<td>Focus management efforts on production output and operating time</td>
<td>No JIT measure</td>
</tr>
<tr>
<td>People make mistakes</td>
<td>We can reduce human errors</td>
<td>Get everyone involved in error-prevention activities</td>
<td>Education, discipline, management by objective</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>Not much can be done about defective materials</td>
<td>Concentrate on keeping a steady supply of materials to avoid shortages</td>
<td>No JIT measure</td>
</tr>
<tr>
<td>Not all materials are defect-free</td>
<td>We can substantially reduce the amount of defective materials</td>
<td>Make sure material supplies are not only steady but also up to our standards</td>
<td>Give guidance to suppliers, inspect all supplied materials</td>
</tr>
<tr>
<td>MACHINE</td>
<td>Not much can be done about the defects machines sometimes produce</td>
<td>Make up for defects by emphasizing a high capacity utilization rate</td>
<td>No JIT measure</td>
</tr>
<tr>
<td>Machines sometimes produce defects</td>
<td>We can take steps to prevent machine-caused defects</td>
<td>Develop and install devices that stop machine-caused defects</td>
<td>Human automation, poka-yoke, total preventive maintenance</td>
</tr>
<tr>
<td>METHOD</td>
<td>Workers naturally develop their own style making each process a little different</td>
<td>Leave the “how” up to the individual workers, as long as their output is high enough</td>
<td>No JIT measure</td>
</tr>
<tr>
<td>Operation and manufacturing methods are often left up to the individual workers to develop</td>
<td>We can eliminate idiosyncrasies in operation and manufacturing methods</td>
<td>Establish one-piece flow production based on standard operations</td>
<td>Standard operations, flow production</td>
</tr>
<tr>
<td>INFORMATION</td>
<td>People cannot avoid explaining things or hearing incorrectly</td>
<td>Keep giving oral instructions</td>
<td>No JIT measure</td>
</tr>
<tr>
<td>Oral instructions are often misunderstood</td>
<td>We can minimize mistakes due to poorly explained or misunderstood oral instructions</td>
<td>Put communications in writing as concise match up information with the subjects discussed</td>
<td>Computer-based information systems, visual control (kanban, etc.)</td>
</tr>
</tbody>
</table>

Figure 12.5 The Five Main Elements behind Errors and Defects.
As long as we accept the status quo as inevitable, we stand absolutely no chance of improving it.

Point 2: Every Defect Has Its Source in People

How easy it is to blame defects on inanimate objects: “We got some bad materials,” or, “The machine broke down.”

If we stop to ask why, such as, “Why did defective materials get delivered here?” or, “Why did the machine break down?,” and if we keep asking why until we reach the ultimate culprit, we will invariably find that culprit to be a person or group of people.

As mentioned earlier, in the manufacturing world, people are the foundation for just about everything. Behind every defect lies at least one instance of human error.

Causes of Defects

To repeat something that bears repeating, all defects can be traced back to some kind of human error.

Cutting machines start turning out defective workpieces when the operator forgets to change the blade at the scheduled time. Another machine starts producing defects because it was overlooked during the last routine maintenance check. Assembly lines start spurting out defective products because an assembly worker got the models mixed up and started attaching the wrong parts.

No matter what the example, we can surely find a human goof at its source.

Figure 12.6 shows how some common kinds of defects are causally linked to typical human errors.

As can be seen in the figure, defects are broken down into two basic types. The first kind of error occurs during any operation that adds value to the product. We call this “processing defect.”

Processing defects come in two types—processing omissions and processing errors. Processing omissions are when
someone has overlooked any part of the processing that is required to make the finished product. Processing omissions can be further broken down into cases where an entire process has been overlooked, which we call “process omissions,” and cases where only some operations in a process were missed, which are called “operation omissions.”

Processing errors occur when processing that is expected in the final product has been performed incorrectly. This can include cases where the wrong kind of processing was performed, or the processing precision was not high enough, so that the final product is substandard in terms of processing.

In contrast to processing defects, factories also experience “material defects,” which means that the material itself is of inferior quality.

The first-level causes of material defects are “missing part” and “wrong part.” Missing part simply means that someone failed to attach a required part to the product during assembly as specified in the assembly instructions.

Wrong part means that the correct number of parts have been assembled, but that at least one of the parts is the
wrong one for that particular product model. The shape of the wrong part may be identical to the correct part, but the precision of processing in some other aspect of the part may be different enough to result in a defective finished product.

The second-level causes that lead to either processing defects or material defects are “error in adjustment,” “error in operation,” “error in setting up the workpiece,” “wrong workpiece,” “error in equipment maintenance,” and “error in preparation of blades, jigs, or tools.”

- **Error in adjustment.** This refers to errors made when adjusting equipment or jigs during equipment retooling operations.
- **Error in operation.** This occurs when the operator operates the equipment incorrectly.
- **Error in setting up the workpiece.** In this instance, the operator processes a workpiece that has been incorrectly positioned during set-up.
- **Wrong workpiece.** This is when workpieces for different models look alike, and the operator sets up and processes the wrong kind of workpiece.
- **Error in equipment maintenance.** This is when the equipment is in poor condition due to inadequate maintenance work or an oversight during maintenance checks.
- **Error in preparation of blades, jigs, or tools.** Here, a defect occurs due to an error or omission made during the preparation of blades, jigs, or tools required for processing.

Second-level causes lead to first-level causes. For example, an error in setting up the workpiece (second-level cause) can very easily result in a wrong part (first-level cause). Other second-level causes can lead to almost any of the first-level causes.

Which of these causes tend to happen most often? After analyzing a number of case studies, I have come up with “The Ten Worst Causes of Defects,” which are shown in Figure 12.7.
As you can see, processing omissions and errors are the two worst causes of defects. This is because the analysis of case studies showed these processing-related causes to be the most frequent phenomena.

By contrast, the case studies included relatively few instances of defects arising from improperly prepared equipment, blades, and jigs, or other equipment-related problems.

The results of this analysis support my earlier contention that people are at the bottom of nearly every defect in the factory. Therefore, we should regard the prevention of human errors as our primary objective. We should also implement _poka-yoke_ (or mistake-proofing) devices and standard operations as effective means of addressing problems in the element “Man/Woman’s” relationship with other elements, such as “Method” and “Information.”

Overall Plan for Achieving Zero Defects

Why Must Defects Occur?

To answer that simple question, we need to take a deeper look into human errors and the other elements that cause the creation of defects.
We have already seen how the element “Man/Woman” stands as the primary cause behind almost all defects. This does not mean, however, that the “Man/Woman” element is the only element we need to address when making efforts to prevent defects.

We must begin by thinking of the factory itself as a living being. We should also remember that production is a system. Therefore, while viewing “Man/Woman” as the core element, we must develop devices to prevent the occurrence and creation of defects.

Figure 12.8 illustrates the overall plan for achieving zero defects in factories.

Man/Woman

- **Device 1: Basic training**

 People are the root cause of errors and defects. We must make sure a good foundation of basic training has been laid. This training should include topics such as
the overall role of people in factories, management by objective, and making a habit of following the regulations and standards.

- Device 2: Multiple skills training

 Many defects are the result of human ignorance. Factory workers are sincerely trying to make defect-free products, but their lack of certain knowledge and skills can make it hard for them to discover defects.

 As mentioned earlier, the people best able to discover defects are the users. They alone put the product to practical use and can therefore best judge whether the product is defective.

 It follows that products and workpieces should be used as soon as they are made. It is also more effective to have the person who made the product do the practical testing, rather than someone else. In one-piece flow production using multi-process operations, the operator accompanies each workpiece to the various processes in the workshop, and can therefore make a thorough inspection while “using” (processing) the workpiece at subsequent processes.

Information

- Device 3: Visual control

 At a typical factory, a quality control inspector comes by each workshop once a month to check on defects. He or she conducts analyses, writes up quantitative results, and then puts the data away in a desk. That is usually the end of it.

 It does little good to collect data on the occurrence of defects and improvements if they are not going to be shared and discussed with the shop-floor workers. The analytical data should not only be explained to the workers, but should also be translated into graphical representations that help the workers see what the data means. This is part of visual control, and it is vital that visual control be rooted in the workshops.
Material

- Device 4: Preventive (independent) inspection
 Downstream inspection is powerless to prevent the production of defective goods. The best defect prevention is the kind that detects and corrects errors before they lead to defects. That kind of defect prevention can only be obtained by combining processing or assembly with inspection, all in the same place.

Machine

- Device 5: Poka-yoke
 One of the tools used by the JIT production system is “human automation.” Human automation means customizing factory machines so that they not only manufacture products, but also detect defects and automatically stop the machine whenever a defect occurs or is about to occur.

 Human automation also includes the development and use of poka-yoke (mistake-proofing) devices that help keep machines from producing defective goods.

- Device 6: Company-wide preventive maintenance
 One important way to prevent defects and ensure high productivity is to make sure the factory equipment is operating in top condition, both in terms of its functions and its capacity.

 Upkeep of equipment should not be left to the maintenance staff alone. After all, it is the equipment operators and not the maintenance technicians who spend all day working with the equipment and who best understand its operating “health.” Operators need to learn what they can do on a daily basis to keep the equipment in top shape.

Method

- Device 7: Flow production
 As mentioned above, the best way to discover defects is to use the product just as soon as it is made. One-piece
flow production enables factory floor workers to do just that.

Device 8: Standard operations
Wherever we find operators who think, “I don’t really know the best way to do this,” or, “It’s up to me to decide how this should be done,” we can be sure to find lots of defective products.

By drawing up a chart that describes the correct equipment layout and operational procedures, we can establish a clearly defined set of standard operations that everyone in the factory can understand and follow.

Basic Strategy for Zero Defects

Device 9: The 5S’s (proper arrangement, orderliness, cleanliness, cleaned up, and discipline)
We have just described the various defect-prevention devices that fall under the categories of the factory’s five main functional elements (Man/Woman, Material, Machine, Method, and Information). However, none of these devices stand much of a chance of working well unless we have first laid a strong foundation. The strongest and most appropriate foundation for preventing defects is the one we create by implementing the 5S’s (proper arrangement, orderliness, cleanliness, cleaned up, and discipline).

The Poka-Yoke System

The Poka-Yoke Concept and Methodology

In Japan, quality control experts coined the term “poka-yoke,” which translates to “mistake-proofing.” *Poka-yoke* refers to where the mistake is made—*poka* refers to the operation and *yoke* to the prevention of mistakes.
Poka-yoke devices are already in use throughout Japan. You will find them in most factories that employ at least 10 or 20 workers. Very few factories, however, have homegrown poka-yoke devices that cleverly solve factory-specific problems. Figure 12.9 shows how poka-yoke devices can be divided into three main types.

The three types of poka-yoke devices shown in Figure 12.9 are described below.

Stop Devices

- Stop for abnormalities. This kind of device can detect certain abnormalities that can lead to defects. When it detects...
such an abnormality, the device stops the machine’s current operation or function. This is analogous to staying home from work when you have a bad cold.

- Stop for defects. This kind of device can detect when the machine has produced a defective product and immediately stops the machine’s current operation or function so that it does not turn out more defective products. This is analogous to leaving work to go home to bed when a cold is compounded by a bad fever.

Control Devices

- Error control. This kind of device prevents operators from straying from standard operations and making errors. An analogy for this would be closing your eyes when you see a dust cloud coming your way.
- Flow control. This kind of device keeps defective goods from being passed to the next process. An analogy for this would be the way an eye that has a speck of dust on it begins watering to remove the dust.

Warning Devices

- Warning signal. This kind of device uses lamps and/or buzzers to warn people when an abnormality that may lead to a defect has occurred. This is analogous to a wind chime that sounds only when the wind is strong enough to constitute a certain degree of a fire hazard.
- Defect signal. This kind of device uses lamps and/or buzzers to warn people when a defect has occurred. The analogy in this case is a fire alarm that alerts people that a fire has started.

As you can see, *poka-yoke* devices operate in one of two ways: as a device that informs us when a defect may be about to occur, or as a device that informs us when a defect has actually occurred. It should be obvious which kind of
operation is more valuable. As the saying goes, an ounce of prevention is worth a pound of cure. That is why JIT leaders stress the need to develop devices that detect abnormalities and give advance warning about the potential for defects.

It is not always easy, however, to predict when a defect is likely to occur. In such cases, we have to respond to the defect as it arises. When a defect occurs in the factory, we should treat it as a true emergency. The alarm lights and buzzer should grab our attention and bring immediate action to resolve the problem that created the defect.

Poka-Yoke Approaches

Imagine a *kaizen* team member standing in a workshop that has been producing defective goods and asking himself, “What kind of *poka-yoke* device shall I use?

Basically, he can take one of three approaches:

1. He can look at the shape of the part being processed and check whether it is usable or unusable.
2. He can study the sequence of processing steps carried out by the operator.
3. He can check the quantitative parameters of the operations.

If he takes the first approach, he needs to check the standards regarding the shape, dimensions, and weight of the part of other material involved and see if any of those standards are not being met. He can use this method to sort defective good from nondefective ones. We call this method the “item characteristics method.”

If he takes the second approach, which we call the “operation step method,” he may discover that at least one of the steps is sometimes not being done correctly, and can then develop a *poka-yoke* device to prevent operator negligence at that step.
If he takes the third approach, he needs to study numerical data describing the various quantifiable parameters of the operation, such as the number of times an operation is repeated, the number of parts involved, the time required, and so on. Variations or gaps in these numerical data can help him sort out defective and defect-free products. We call this the “statistical method.”

Let us look a little more closely at each of these approaches and their corresponding methods.

Item Characteristics Method

- **Shape method.** For this method, we need to have standards set for various shape characteristics, such as holes, angles, dents or creases, protrusions, curves, and so on. Then we can compare each item’s shape characteristics against these standards to see if the item is defective.

- **Dimension method.** In this case, we need to have standards set for various dimensions, such as height, length, width, thickness, diameter, and the like. We then compare each item’s dimensional characteristics against these standards to see if the item is defective.

- **Weight method.** Armed with weight standards, we can simply weigh each item to check for extra mass that indicates a defect. We can also check the weight balance between the right and left halves of certain items.

Operation Step Method

- **In-process sequence method.** The purpose of *poka-yoke* here is to find out when operators stray from standard operations, either in their own work or in the way they work with the equipment, and to keep them from continuing the sequence of operations in that process.

- **Between-process sequence method.** In this case, *poka-yoke* devices work to stop operations whenever a process within a series of processes is performed incorrectly or is overlooked.
Statistical Method

- Counter method. Here, we check the workshop against the current standards for the number of times an operation should be repeated or the number of parts involved. *Poka-yoke* devices can detect when the numbers are wrong and can issue a warning.
- Remainder method. Sometimes, parts are grouped into sets before being processed or assembled. A *poka-yoke* device can detect when any part remains in used sets and can sound an alarm to notify everyone that a part has been omitted.
- Other statistical methods. Other numerical values that can be monitored by *poka-yoke* devices include pressure, electrical current, temperature, and time. *Poka-yoke* devices can notify us whenever any of these values are off standard.

Poka-Yoke Detection Devices

There are all kinds of devices that can be used to detect abnormalities. Generally, such detection devices can be categorized into contact devices and noncontact devices.

Let us look at a few typical examples in each of these two categories.

Contact Devices

- Microswitches and limit switches. These types of detectors are the ones most commonly used as *poka-yoke* devices. They work best in detecting the presence and position of workpieces, dies, and bits or blades. Microswitches offer a variety of actuators to choose from, according to the specific application. Figure 12.10 lists the main types of actuators and their respective features.
- Other contact devices. Although microswitches and limit switches are the most often used types of contact
<table>
<thead>
<tr>
<th>Shape</th>
<th>Name</th>
<th>Pretravel</th>
<th>Overtravel</th>
<th>Operating Force</th>
<th>Vibrating/Shock Resistance</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pin push button type</td>
<td>Small</td>
<td>Small</td>
<td>Large</td>
<td>Very good</td>
<td>Operated by a short straight stroke, this switch features a snap-action mechanism that responds to direct contact with the pin. It therefore offers the highest precision for position detection. However, it also has the least amount of overtravel among all the actuators, and therefore requires a reliable stopper.</td>
</tr>
<tr>
<td></td>
<td>Roller push button type, attached to panel</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
<td>OK</td>
<td>Roller attached to the panel assembly is suitable for use with rapidly moving cams or docks.</td>
</tr>
<tr>
<td></td>
<td>Hinged lever</td>
<td>Large</td>
<td>Medium</td>
<td>Small</td>
<td>OK</td>
<td>Operable under a small operating force, suited for use with rapidly moving cams or docks. Also features large stroke. Levers are available in various shapes and configurations to suit different types of operation.</td>
</tr>
<tr>
<td></td>
<td>Hinged roller lever</td>
<td>Large</td>
<td>Medium</td>
<td>Small</td>
<td>OK</td>
<td>This is a hinged lever with a roller attached. Also suitable for rapidly moving cams or docks. Requires less operating force on the pin than does the hinged lever and uses a larger stroke.</td>
</tr>
<tr>
<td></td>
<td>Unidirectional hinged roller lever</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>OK</td>
<td>This is a hinged roller lever that can also be operated using a unidirectional operating device. If the operating device presses from the opposite direction, the roller section bends and prevents the actuator from operating. As such, this device is especially suited for applications where reverse-direction operation is to be avoided.</td>
</tr>
<tr>
<td></td>
<td>Roller/leaf spring type</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Good</td>
<td>This is leaf spring with a roller attached. Can be used with high-speed cams.</td>
</tr>
</tbody>
</table>

Figure 12.10 Microswitch Actuators: Types and Features.
switches, there are some other kinds of “touch switches” that feature highly sensitive detection of workpiece positions. In addition, differential transformers can be used to detect changes in electromagnetic force as a type of contact pressure and trimetron switches can be used for dial gauge applications.

Noncontact Switches

- Photoelectric switches. Photoelectric switches can be used with devices that transmit and reflect light. As detectors, photoelectric switches come in two types: unidirectional switches that detect the interruption of light transmission between two photoelectric switches, and reflector switches that use reflected light beams. Reflector switches are further broken down into dispersion reflectors and feedback reflectors. (See Figure 12.11.)

Photoelectric switches are also sometimes classified according to function. Some have external amplifiers, others have built-in amplifiers, and still others include built-in power supplies. Figure 12.12 shows how photoelectric switches are classified according to detection method and function. Figure 12.13 shows how photoelectric switches

![Use of photoelectricity as a detection method diagram](image)

Figure 12.11 Photoelectric Switch Detector.
<table>
<thead>
<tr>
<th>Detection method</th>
<th>Unidirectional method</th>
<th>Reflection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Switches with separate amplifiers</td>
<td>Switches with built-in amplifiers</td>
</tr>
<tr>
<td>Light-blocking</td>
<td>Switches with built-in amplifiers</td>
<td>Switches with built-in power supplies</td>
</tr>
<tr>
<td>Light-transmitting objects</td>
<td>Switches with separate amplifiers</td>
<td>Switches with built-in amplifiers</td>
</tr>
<tr>
<td></td>
<td>Switches with built-in power supplies</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12.12 The Relationship between Object, Detection Method, and Function of Photoelectric Switches.

Photoelectric switch with built-in amplifier

(Uses)

- For confirming passage of solid (light-reflecting) objects
- For detecting translucent objects
- For confirming supply of parts
- For confirming passage of wafers

Figure 12.13 The Use of Photoelectric Switches.
with built-in amplifiers are used. Figure 12.14 shows how fiber optic switches are used.

- Proximity switches. Proximity switches are activated when they come close to an object. Some proximity switches use electromagnetism to detect proximity. Figure 12.15 shows various ways of using proximity switches.

- Positioning sensors. Noncontact switches also include sensors that help position objects correctly. Figure 12.16 shows some ways these can be used.

- Outer diameter and width sensors. These sensors use groups of parallel light beams to obtain a precisely measured image of the object being detected. These sensors can continually measure object dimensions, such as outer diameter and width. Figure 12.17 shows some ways of using outer diameter and width sensors.

- Displacement sensors. Displacement sensors, which usually use lasers or other optical media, can measure an object’s directional dimensions without touching the object. They can also measure various colors and materials characteristics. Figures 12.18A and 12.18B show several uses for displacement sensors.

- Metal passage sensors. These noncontact sensors can detect the passage of metal objects. Their uses include detection of fast-moving metal objects and counting very small metal objects. Figure 12.19 shows how metal passage sensors can be used.

- Color mark sensors. Color mark sensors can be used to sense the difference between two slightly different colors and to detect very small marks. Figure 12.20 shows how color mark sensors can be used.

- Vibration switch. These sensors can detect vibration in almost any kind of material. They can also be used to detect the passage, width, and missing drill bits in various objects. Figure 12.21 shows some ways of using vibration switches.
Figure 12.14 The Use of Fiber Optic Switches.
Double-feed sensor. Double-feed sensors generally work in one of two ways: as top-and-bottom sensors or as edge sensors. Figure 12.22 shows how double-feed sensors can be used.

This concludes our brief description of contact and noncontact detectors, switches, and sensors that are used daily in factories. There are many types of detectors that
have not been described here, and new, more sophisticated kinds are being developed all the time. This is an area where a constant need for data gathering and practical research exists. Figure 12.23 lists the various kinds of switches and sensor described in previous pages.
For further reference, please check the follow product catalogs listed under the manufacturer.
- Electronics Co., Ltd.
- Sensor Catalog, 1985
- Optical Displacement Sensors
- Amplifier-Equipped Proximity Switches
Figures 12.18A Uses of Displacement.

- Fiber Optic Switches
- Ultra-Compact Photoelectric Switches
- Matsushita Electric Industrial Co., Ltd.
- Control Devices, 1984–85
- MP Photoelectric Switches
- Microswitches
Figures 12.18B (continued)

- Triode MQ Photoelectric Switches
- Limit Switches
- Color Mark Sensors
- Hitachi Electric Co., Ltd.
- Best Control Devices from Omron, 7th Ed.
Figure 12.19 Uses of Metal Passage Sensors.
Figure 12.20 How to Use Color Mark Sensors.
Figure 12.21 Uses of Vibration Switches.
Double-feed sensor

Top-and-bottom detector

<table>
<thead>
<tr>
<th>Controller</th>
<th>Sensor</th>
<th>Standard type</th>
<th>Compact type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edge detector

<table>
<thead>
<tr>
<th>Controller</th>
<th>Sensor</th>
<th>Standard type</th>
<th>Compact type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Uses)

- Detection from above and below
- Tube lip detector
- Confirming pieces in aluminum boxes
- Metal fragment detector for metal containers
- Edge detector (A)
- Edge detector (B)
- Double lead frame detector

Figure 12.22 Uses of Double-Feed Sensors.
<table>
<thead>
<tr>
<th>Detector devices</th>
<th>Item characteristics method</th>
<th>Operat-ion step method</th>
<th>Statistical methods</th>
<th>Detection devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact type</td>
<td>Shape method</td>
<td>Dimension method</td>
<td>Weight method</td>
<td>Between-process sequence method</td>
</tr>
<tr>
<td></td>
<td>In-process sequence method</td>
<td>Counter method</td>
<td>Remainder method</td>
<td>Line and position detectors</td>
</tr>
<tr>
<td></td>
<td>Surface detectors</td>
<td>Weight detectors</td>
<td>Dent detectors</td>
<td>Color detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foreign matter detectors</td>
<td>Repetition detectors</td>
<td>Times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current gauges</td>
<td>Voltage gauges</td>
<td>Temperature gauges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-contact type</td>
<td>Pressure gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Counters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauges</td>
<td>Buzzers</td>
<td></td>
<td>Alarm devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lamps and blinking lights</td>
<td></td>
<td>Andon</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12.23 *Poka-Yoke* Detection Devices and Their Uses.
Pokayoke Case Studies for Various Defects

The following pages describe 28 examples of pokayoke devices, beginning with a table that categorizes these examples according to the type of defect causes they work to prevent.

<table>
<thead>
<tr>
<th>Cause of Defect</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing omissions (6)</td>
<td></td>
</tr>
<tr>
<td>1. Preventing hole count errors during hole punching</td>
<td></td>
</tr>
<tr>
<td>2. Preventing deburring omissions</td>
<td></td>
</tr>
<tr>
<td>3. Preventing omission of spindle hole punch process</td>
<td></td>
</tr>
<tr>
<td>4. Preventing omission of grinding process</td>
<td></td>
</tr>
<tr>
<td>5. Preventing omission of assembly step</td>
<td></td>
</tr>
<tr>
<td>6. Prevent omission of hole drilling</td>
<td></td>
</tr>
<tr>
<td>Processing errors (7)</td>
<td></td>
</tr>
<tr>
<td>7. Preventing board insertion errors</td>
<td></td>
</tr>
<tr>
<td>8. Preventing pin dimension errors</td>
<td></td>
</tr>
<tr>
<td>9. Preventing errors in aligning press dies</td>
<td></td>
</tr>
<tr>
<td>10. Preventing variation in hose cut lengths</td>
<td></td>
</tr>
<tr>
<td>11. Preventing bridge defects</td>
<td></td>
</tr>
<tr>
<td>12. Preventing insufficient torque when tightening bolts</td>
<td></td>
</tr>
<tr>
<td>13. Preventing drilling defects</td>
<td></td>
</tr>
<tr>
<td>Error in setting up workpiece (6)</td>
<td></td>
</tr>
<tr>
<td>14. Preventing incorrect drill position during drilling process</td>
<td></td>
</tr>
<tr>
<td>15. Preventing defects due to error in setting up product</td>
<td></td>
</tr>
<tr>
<td>16. Preventing incorrect attachment of bracket</td>
<td></td>
</tr>
<tr>
<td>17. Preventing processing errors due to workpiece set in wrong direction</td>
<td></td>
</tr>
<tr>
<td>18. Preventing incorrect positioning of workpiece prior to drilling</td>
<td></td>
</tr>
<tr>
<td>19. Preventing tap processing errors</td>
<td></td>
</tr>
<tr>
<td>Cause of Defect</td>
<td>Theme</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Missing item (5)</td>
<td>20. Preventing omission of inserted part</td>
</tr>
<tr>
<td></td>
<td>21. Preventing omission of name</td>
</tr>
<tr>
<td></td>
<td>22. Preventing omission of brush</td>
</tr>
<tr>
<td></td>
<td>23. Preventing omission of items during packing</td>
</tr>
<tr>
<td></td>
<td>24. Preventing omission of E rings</td>
</tr>
<tr>
<td>Wrong part</td>
<td>25. Prevention of wrong part assembly</td>
</tr>
<tr>
<td></td>
<td>26. Preventing mixing of nondefective and defective items</td>
</tr>
<tr>
<td>Wrong workpiece</td>
<td>27. Preventing errors in gear assembly</td>
</tr>
<tr>
<td>Error in preparation of blades, jigs, or tools</td>
<td>28. Preventing errors in attachment of left and right drawer rails</td>
</tr>
</tbody>
</table>
Theme 1

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing hole count errors during hole punching</td>
<td>Processing omission</td>
</tr>
</tbody>
</table>

Problems

Sometimes, the operator at the hole punching process fails to check the number of punched holes and punches fewer than the specified number.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator counted the holes as he or she was punching them. This left room for counting errors and led to problems arising from having too few holes.</td>
<td>Installed a limit switch to confirm the punching of holes and to count the number of punched holes.</td>
</tr>
</tbody>
</table>

Nondefective item

- Limit switch for counting holes
- Limit switch for checking workpiece position

Defective item

- Limit switch for counting holes
- Buzzer
- Jig
Theme 2

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing deburring omissions</td>
</tr>
</tbody>
</table>

Problems

Sometimes, after the diecasting process, the operator forgets to deburr the workpiece and instead sends it directly downstream. This has led to complaints from customers.

Before improvement

Pre-shipment inspectors visually checked products to confirm deburring. However, some products that lacked deburring still were sent to customers, leading to customer complaints.

After improvement

A *poka-yoke* pin was attached to the base to detect when the deburring process is omitted. This device effectively eliminated all deburring omissions.

Nondefective item

![Sectional view of product](image1)

Nondefective (processed) item

![Sectional view of product](image2)

Defective item

![Location of defect](image3)

Defective (unprocessed) item

![Pin prevents unprocessed item from being set onto base](image4)
Theme 3

Defect cause category

| Preventing omission of spindle hole punch process | Processing omission |

Problems

Normally, spindle holes are punched in the workpiece, and then the workpiece is bent. However, sometimes the workpiece is bent before its spindle holes are punched.

Before improvement

The process sequence was:
1. Hole punching
2. Bending

If the order gets reversed and the workpiece is bent before the holes are punched, it is impossible to punch the holes after bending. The operators tried carefully to avoid this mistake, but it still happened occasionally.

After improvement

Pins were attached to the die used for bending so that workpieces without spindle holes cannot be set onto the die. This effectively prevented any hole punch omissions.

Correct processing sequence

<table>
<thead>
<tr>
<th>Cutting</th>
<th>Hole punching</th>
<th>Bending</th>
</tr>
</thead>
</table>

- After cutting: Cannot be set onto die
- After hole punching: Can be set onto die

Poka-yoke pin

Die

Incorrect processing sequence

<table>
<thead>
<tr>
<th>Cutting</th>
<th>Bending</th>
<th>Hole punching</th>
</tr>
</thead>
</table>

- Cannot punch holes
Theme 4

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of grinding process</td>
</tr>
<tr>
<td>Processing omission</td>
</tr>
</tbody>
</table>

Problems

Pre-shipment inspectors often found defective products in which the grinding process was omitted, due to operators’ misplacement of workpieces or their skipping of workpieces when stopping processing to take a break.

Before improvement

The operator worked with the grinding machine in front, the unprocessed workpieces at the left, and the processed ones at the right. Sometimes, the operator would mistakenly place an unprocessed workpiece in the processed pile at the right.

After improvement

A chute with adjustable dimensions was attached between the grinding machine and the box for processed workpieces. The sides of the chute were tapered to allow only ground (processed) workpieces to pass through.

Nondefective (processed) item

![Diagram of nondefective (processed) item]

Defective (unprocessed) item

![Diagram of defective (unprocessed) item]
Theme 5

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of assembly step</td>
</tr>
</tbody>
</table>

Problems

If the operator is absent or for some other reason fails to insert a right-angle piece onto the workpiece, the defect is not noticed until the inspection at the end of the assembly line.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator inserted right-angle pieces into workpieces as they were conveyed to downstream processes.</td>
<td>Two limit switches were installed. If the limit switches do not detect the right-angle piece on the workpiece, the conveyor is automatically stopped. This reduced assembly omissions for this process to zero.</td>
</tr>
</tbody>
</table>

![Diagram showing the process before and after improvement](image_url)
Theme 6

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of hole drilling</td>
<td>Processing omission</td>
</tr>
</tbody>
</table>

Problems

Operators sometimes mistake one model for another and do not drill holes in models where holes are required.

Before improvement

The processing sequence for one model was cutting → hole drilling → pressing and for another model it was simply cutting → pressing. Sometimes, operators mistake one model for another and do not drill required holes.

After improvement

Since the press jig must be changed when changing models, two *poka-yoke* pins were attached to the jig for the model requiring holes so that the model cannot be pressed unless its holes have been drilled. This prevented omission of hole drilling in the model that required it.

Nondefective item

![Nondefective item diagram](image)

Defective item

![Defective item diagram](image)
Theme 7

<table>
<thead>
<tr>
<th>Problem</th>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing board insertion errors</td>
<td>Two adjacent boards—the detection circuit board and the control circuit board—have</td>
<td>Guide pins were attached to different positions on the two slots and notches were</td>
</tr>
<tr>
<td></td>
<td>the same connection pin configurations and appear similar in general. This makes</td>
<td>made in corresponding positions on the boards to prevent incorrect insertion of</td>
</tr>
<tr>
<td></td>
<td>it easy to insert them into the wrong slots.</td>
<td>boards.</td>
</tr>
<tr>
<td>Processing errors</td>
<td>Processing errors</td>
<td></td>
</tr>
</tbody>
</table>

Defect cause category

| Preventing board insertion errors | Processing errors |

Problems

Whenever a wrong board gets inserted into a slot, it does not get noticed until the final inspection process.

![Diagram showing before and after improvements]
Theme 8

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing pin dimension errors</td>
</tr>
</tbody>
</table>

Problems

When a pin is attached during the board assembly process, it must not protrude more than 10 mm. Some that measured more than 10 mm slipped through the inspection process and were passed downstream.

Before improvement

After attaching the pin to a board, the operator checked the board to make sure the pin did not protrude more than 10 mm, and then passed the board to the next process.

After improvement

To make it easier for operators to check pin lengths, they developed a jig that included a guide pin set into the jig so that the board and pin would not fit if the board’s pin was longer than 10 mm.
Theme 9

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing errors in aligning press dies</td>
</tr>
<tr>
<td>Processing error/error in jig preparation</td>
</tr>
</tbody>
</table>

Problems

Sometimes the operator inserted the top die upside-down onto the bottom die, which caused defective castings and/or damaged dies.

Before improvement

The two guide pins for the two halves of the die were of equal size, which enabled the top half of the die to be placed correctly or upside-down onto the bottom half. When placed upside-down, it resulted in defective castings and/or damaged dies.

After improvement

The die was redesigned to have guide pins in different sizes making it impossible to place the top half of the die upside-down onto the bottom half.

[Diagram of top half of die with guide pins and bottom half of die with guide pins]
Theme 10

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing variations in hose cut lengths</td>
</tr>
</tbody>
</table>

Problems

Under current conditions, operator was unable to stretch hose out straight to measure length prior to cutting. This resulted in some variation in hose cut lengths.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator clamped down one end of the hose and wound the hose around three guide pegs before cutting it using the fixed-position cutter. However, the hose could rest at various points along the guide pegs, which caused some variation in the hose cut length.</td>
<td>The guide pegs were tapered so that, when pulled tight, the hose would always slip down to the bottom of the pegs. This ensured uniform hose cut lengths.</td>
</tr>
</tbody>
</table>

![Diagram of hose cutting process](image)

Hose clamp → Hose → Guide pegs → Cutter → Hose → Improved guide peg

Pulling hose tight causes hose to slip to bottom of guide peg.
Theme 11

<table>
<thead>
<tr>
<th>Preventing bridge defects</th>
<th>Processing error</th>
</tr>
</thead>
</table>

Problems

The soldering process on a motor safety mechanism involved many soldering points and little space between the points. It was difficult for newer operators to avoid making bridge defects.

Before improvement

As can be seen in the drawing below, the motor safety mechanism has five soldering points, which are all close together. Newer operators and operators who made careless mistakes produced solder bridges between some points, resulting in defective products.

After improvement

The insulator was improved by adding dividers between each pair of soldering points to prevent solder bridges from forming. This reduced solder bridge defects to zero.

Example of bridge defect

Dividers between soldering points on insulator
Theme 12

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing insufficient torque when tightening bolts</td>
</tr>
<tr>
<td>Processing error</td>
</tr>
</tbody>
</table>

Problems

Sometimes, operators do not notice when the pneumatic drill’s gauge shows abnormally low air pressure, which results in insufficient torque on the bolts.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The conveyor kept operating even when the pneumatic drill’s air pressure was low, which resulted in insufficient torque on the bolts.</td>
<td>When the pneumatic drill’s air pressure drops to 5 kg/cm² or less, an alarm lamp starts blinking, a bell rings, and the conveyor automatically stops.</td>
</tr>
</tbody>
</table>

Bolt tightening process
Theme 13

<table>
<thead>
<tr>
<th>Preventing drilling defects</th>
<th>Processing error</th>
</tr>
</thead>
</table>

Problems

Drill is sometimes withdrawn from workpiece before completely drilling a hole, causing a defective hole that creates problems in the assembly process.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The drill is able to drill holes completely, but sometimes it is withdrawn too soon, leaving an incomplete (defective) hole. It was left up to the operator to determine by “instinct” whether or not the hole was drilled completely. This led to oversights and problems at the assembly line.</td>
<td>Two limit switches were installed on the drilling machine. Limit Switch 1 is activated whenever the drill is lowered and is deactivated when the drill is fully raised. Limit Switch 2 is activated when the drill is lowered completely. If Limit Switch 1 gets deactivated before Limit Switch 2 is activated, a buzzer sounds to alert the operator that the hole was not drilled completely.</td>
</tr>
</tbody>
</table>

![Diagram of drilling machine with limit switches and buzzer](image)
Theme 14

<table>
<thead>
<tr>
<th>Preventing incorrect drill position during drilling process</th>
<th>Error in setting up workpiece</th>
</tr>
</thead>
</table>

Problems

During the drilling process, the operator occasionally sets up the workpiece in an upside-down position and then drills holes in it. The holes end up in the wrong places, and this defect is generally not noticed until the assembly line.

Before improvement

When setting up the workpiece, the operator is supposed to set the grooved section of the workpiece against the jig, then drill two holes in the workpiece.

Newer operators sometimes insert the workpiece upside-down, which causes the holes to be drilled in the wrong places. Even veteran operators make this mistake occasionally out of carelessness.

After improvement

A limit switch was installed in the jig to detect the presence of an upside-down workpiece alongside the jig. If the workpiece is set correctly, the limit switch fits into the workpiece groove and is not activated. If set upside-down, the limit switch is activated and the machine is unable to operate. This effectively reduced drilling position defects at this process to zero.

Correct workpiece position

Incorrect workpiece position
Theme 15

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing defects due to error in setting up product</td>
<td>Error in setting up workpiece</td>
</tr>
</tbody>
</table>

Problems

When pressing the product, if the die is not set just right, the press turns out a defective product.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator set the product in the die, checked its position, then pressed it. Sometimes, however, the position was not exactly right and the resulting product was defective.</td>
<td>A limit switch was installed that does not allow the press to operate unless the product is set exactly right. This improvement reduced press defects at this process to zero.</td>
</tr>
</tbody>
</table>

![Diagram of press and product set-up limit switch and ON/OFF circuit](image)
Theme 16

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing incorrect attachment of bracket</td>
</tr>
</tbody>
</table>

Problems

When attaching a bracket to a case, it is easy to get the case reversed since the case is symmetrical on the right and left sides.

Before improvement

The correct way to set-up the case is to have the front groove at the bottom. However, operators sometimes set the case upside-down, which causes the bracket to get attached at the wrong place.

After improvement

A **poka-yoke** lip was glued onto the jig so that the case cannot sit flat on the jig unless its front groove is on the bottom. This reduced bracket attachment defects to zero.

Nondefective item

![Nondefective item](image1)

Defective item

![Defective item](image2)

Nondefective item

![Nondefective item](image3)

Defective case set-up

![Defective case set-up](image4)
Theme 17

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing processing errors due to workpiece set in wrong direction</td>
<td>Error in setting up workpiece</td>
</tr>
</tbody>
</table>

Problems

Workpiece is sometimes set in reverse and then is bent, which causes problems in the assembly line and has led to delayed shipments.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator was supposed to check the direction of the workpiece before setting it in the jig. Occasionally, the operator mistakenly inserted the workpiece in reverse.</td>
<td>Two poko-yoke guide pins were set in the jig to match the holes in the workpiece. This prevents the workpiece from being set in the jig in reverse and consequently reduced the corresponding defect to zero.</td>
</tr>
</tbody>
</table>

Nondefective item

![Diagram of nondefective item]

Poka-yoke guide pins prevent reverse placement of workpiece

Defective item

![Diagram of defective item]
Theme 18

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing incorrect positioning of workpiece prior to drilling</td>
</tr>
<tr>
<td>Error in setting up workpiece</td>
</tr>
</tbody>
</table>

Problems

Since the workpiece does not have a distinctive shape, it is easy to set it on the drill jig upside-down or in reverse. Either of these errors causes drilling defects that are generally not discovered until the assembly process.

Before improvement

When the workpiece is set in reverse, the drill holes go in the wrong places and result in a defective product. Usually, this is not noticed until the assembly process, which causes problems for delivery and upsets customers.

After improvement

Instead of relying on the operators to carefully check the workpiece position, a *poka-yoke* jig was created. This jig does not allow the workpiece to be set in any position except the correct one.

Nondefective item

- Drill hole

Defective item

- **Upside-down**
- **Reverse**
Theme 19

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing tap processing errors</td>
</tr>
</tbody>
</table>

Problems

If the workpiece is not set just right in the jig at the tapping process, the tap will process the wrong part of the workpiece, resulting in a defective product.

Before improvement

Sometimes the workpiece was not set flat on the jig (as shown in the drawing below). If the operator makes this mistake and taps the workpiece, the product will be defective.

After improvement

A new jig with a *poka-yoke* side plate was developed to prevent the operator from inadvertently setting the back edge of the workpiece on the back of the jig. This new jig achieved two improvement points:

1. It raised the back guide edge for the workpiece.
2. It also provides a guide edge in the middle for the workpiece.

Normal set-up

![Diagram of normal set-up](image)

Abnormal set-up

![Diagram of abnormal set-up](image)
Theme 20

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of inserted part</td>
<td>Missing item</td>
</tr>
<tr>
<td>An insert part must be attached to the workpiece prior to diecasting. However, this part is often omitted. To prevent this, a special inspection process was added so that each workpiece can be inspected. Even so, complaints regarding missing insert parts have been received from customers.</td>
<td></td>
</tr>
<tr>
<td>A special inspection process was added so that each workpiece can be inspected to confirm placement of the insert part. Check marks were made on workpieces with insert parts, but sometimes the marks were made on workpieces that actually did not have an insert part.</td>
<td>A sensor was installed at the deburring process that follows the diecasting process. This sensor detects the presence or absence of the insert part. If the part is not there, the sensor prevents the press from operating.</td>
</tr>
</tbody>
</table>

![Insert part](image1)

![Exterior view of workpiece](image2)

![Press](image3)

![ON/OFF circuit](image4)

![Cutaway view of workpiece](image5)
Theme 21

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of nameplate</td>
</tr>
<tr>
<td>Missing item</td>
</tr>
</tbody>
</table>

Problems

When operators are distracted or stop for breaks, they tend to forget to glue on the nameplate.

Before improvement

When the problem of missing nameplates was discovered, operators were admonished to be more careful about remembering to glue them on. However, the problem persisted.

After improvement

A photoelectric switch was installed to detect whether or not the nameplate has been attached. If not attached, the switch activates a lamp and buzzer to alert the operator. This device effectively prevented the operators from forgetting to attach nameplates.
Theme 22

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of brush</td>
</tr>
</tbody>
</table>

Problems

Two brushes are supposed to be attached to a mouthpiece unit, but sometimes operators fail to attach one of them.

Before improvement

A separate inspector was assigned to this process to ensure that both brushes are attached to each mouthpiece unit. In addition, the piles of mouthpieces with and without brushes were moved farther apart to avoid mix-ups.

After improvement

Two improvements were made to prevent omission of either of the brushes.

1) An automatic brush assembling machine was developed.

 ![Diagram of automatic brush assembling machine]

 The machine will not operate if a brush is omitted. A sensor detects when a brush is missing and automatically informs the operators.

2) *Poka-yoke* device

 When the mouthpiece/brush units are sent via the chute to the box for finished products, the chute has a *poka-yoke* notch in it that will catch mouthpieces that are not raised in the middle by brushes on both sides, as shown in the drawing below.

 ![Diagram of poka-yoke device]

 Poka-yoke notch
Theme 23

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of items during packing</td>
</tr>
</tbody>
</table>

Problems

There are six items to be included in each box at the packing process. Sometimes the packers forget to include all of the items.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
</table>
| The two packers divide up three tasks:
 1. Assembling boxes
 2. Cleaning off items to be packed
 3. Packing items
When the inspectors have an extra heavy workload or when the packers are especially busy, boxes with missing items are sometimes shipped to customers. | Photoelectric switches were installed at the top and bottom front edges of the supply boxes containing items to be packed. These switches are activated whenever a packer reaches into a box to pickup an item. If a switch on any of the supply boxes is not activated, the box being packed is blocked by a stopper. If all of the photoelectric switches have been activated, the stopper allows the box to proceed and the box then passes a limit switch which deactivates all the photoelectric switches in preparation for the next round of packing. |

![Diagram of packing process and photoelectric switches](image-url)
Theme 24

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing omission of E rings</td>
<td>Missing item</td>
</tr>
</tbody>
</table>

Problems

Sometimes workers forget to attach E rings and ship the product without them.

Before improvement

Workers are supposed to visually confirm that E rings are attached. However, sometimes workers forget both to attach them and to confirm attachment, so products occasionally are shipped without E rings.

After improvement

Instead of visually checking for the presence of E rings, a pneumatic device was developed that automatically attaches the E rings and uses a microswitch to confirm their attachment.

Nondefective item

![Nondefective item diagram](image1)

Defective item

![Defective item diagram](image2)

Workpiece

![E ring](image3)

Pneumatic cylinder

![Pneumatic cylinder](image4)

Microswitch

![Microswitch](image5)
Theme 25

<table>
<thead>
<tr>
<th>Defect cause category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention of wrong part assembly</td>
</tr>
</tbody>
</table>

Problems

Several model changes are made each day at this factory’s assembly line, and sometimes the assembly workers mix up the various models’ parts and end up assembling the wrong parts.

Before improvement

To keep the changeover times between models short, the assembly line workers simply put some of the smaller parts from other models into a parts storage stand. This made it easy for them to pickup the wrong part by mistake.

After improvement

A revolving rack was installed in place of the previous parts storage stand. The model-specific parts revolve within the rack, as shown below. On one side of the rack, an indicator panel shows which model’s parts can be set for the drawer. The workers push a button to select which model they want and to open the drawer. This device effectively prevented workers from mixing up the parts.
Theme 26

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing mixing of nondefective and defective items</td>
<td>The people who inspect integrated circuits (ICs) for specified characteristics sort out the ones that meet the specifications from those that do not. The two boxes that the ICs are sorted into are right next to each other, and the inspectors sometimes put defective ICs into the nondefective IC box and vice-versa. This has resulted in complaints from customers who received defective ICs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The inspectors used an IC tester to check the ICs' characteristics and placed the IC into the defective box or the nondefective box depending upon the test results.</td>
<td>As shown in the drawing below, the IC tester was connected to a divider switch mechanism that automatically diverts ICs to the proper box according to the test results. The inspectors need only place the ICs onto the chute. This eliminated errors in sorting ICs.</td>
</tr>
</tbody>
</table>

[Diagram showing the process before and after improvement]
Theme 27

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing errors in gear assembly</td>
<td>Wrong workpiece</td>
</tr>
</tbody>
</table>

Problems

The product’s time switch includes a switch for selecting between two cycle settings, 50 Hz and 60 Hz, each of which connects to one of two adjacent gears. There is a three-teeth difference between these two gears, which is not enough of a difference to make them easily distinguishable by sight. Consequently, sometimes the gears get assembled in the wrong places.

<table>
<thead>
<tr>
<th>Before improvement</th>
<th>After improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The assembly workers had to assemble the two slightly different gears right next to each other, and it was easy to get them mixed up and put them in the wrong place.</td>
<td>The gear posts were improved as shown below. In addition, since the gears are made of plastic, it was decided that the 50 Hz gear would be made of white plastic and the 60 Hz of blue plastic to make it easy to tell them apart. These two improvements succeeded in reducing gear assembly errors to zero.</td>
</tr>
</tbody>
</table>

- The 50 Hz gear will not fit onto the 60 Hz gear’s post.
- The 60 Hz gear will not fit onto the 50 Hz gear’s post.
Theme 28

<table>
<thead>
<tr>
<th>Defect cause category</th>
<th>Preventing errors in attachment of left and right</th>
</tr>
</thead>
</table>

Problems

At the process where workers attach drawer rails, the rail jig sometimes slips between attaching one rail and the next, resulting in a mismatch of rails on the right and left sideboards. Other problems result when a worker forgets to turn the jig over backwards to do the other sideboard’s rails.

Before improvement

Workers used the same jig to attach drawer rails on both the left and right sideboards.

If the jig is shifted at all between rail settings or if the worker forgets to turn the jig over, for the other sideboard’s rails, the rails do not match on the right and left sideboards and the drawer cabinet cannot be assembled.

After improvement

The jig for attaching rails was set in a frame so that it could not slip between rail settings and had to be turned over backwards to attach the other sideboard’s rails. (See drawing below.)

This new jig eliminated all rail attachment errors.

Nondefective and defective items

![Diagram showing nondefective and defective items](image)

Left sideboard

If the rail positions do not match, the drawer cabinet cannot be assembled.

Right sideboard

Jig for attaching rails

Jig flips over like a page in a book

Drawer rails

Jig for attaching rails

Left sideboard

Work table

Right sideboard
How to Use *Poka-Yoke* and Zero Defects Checklists

We have seen many ways in which *poka-yoke* and zero defects devices can be developed to solve particular problems.

In terms of human resources, we need to maintain a program of continual education and training. As for equipment and operations, we need to review the various jigs, tools, equipment layout, and operation methods to see how the *poka-yoke* concept can be applied to eliminate defects caused by human error.

The *poka-yoke* approach to zero defects leads to profound improvements. If someone is a knowledgeable and experienced industrial engineer or quality control engineer, we would expect him or her to devise various ways to make defect-reducing improvements. However, we can also seek and expect fresh ideas from *kaizen* team members and newer factory floor workers, as well as the “old hands.”

In a company-wide quality assurance program, the central wellspring for improvement ideas should be the rank-and-file workers. Factories cannot always count on the “professionals” to produce strokes of genius. Instead, everyone must pull together, and when they can do that, they will need powerful tools for improvement that everyone can use.

One such tool is the JIT checklist for *poka-yoke* and zero defects. In Japan, we use the nickname “*poka-zero*” for this sheet. (See Figure 12.24.)

Workers will need a little instruction in order to use the *poka-yoke/zero-detect* checklists correctly. Below is a step-by-step description of the checklist.

Division, Department, Process, Model

First, enter the company division, department, and the name of the process where the item in question is being checked.
Poka-Yoke/Zero Defects Checklist

<table>
<thead>
<tr>
<th>#</th>
<th>Operation (machine)</th>
<th>Operation</th>
<th>Standard Inspect</th>
<th>Defect description</th>
<th>Defect cause</th>
<th>Defect cause</th>
<th>3-point evaluation</th>
<th>3-point response</th>
<th>Description of response (evaluation)</th>
<th>Deadline</th>
<th>Person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove workpiece</td>
<td>Manual operation</td>
<td>None</td>
<td>Damaged</td>
<td>Workpieces rubbed</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>S101 lifter</td>
<td>Manual operation</td>
<td>None</td>
<td>Dented</td>
<td>Workpieces collided</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>S101 small groove process</td>
<td>Manual operation</td>
<td>2 × 600</td>
<td>None</td>
<td>Defective groove width</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>Use limit switch to check length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bent groove</td>
<td>Wrong jig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Store workpiece</td>
<td>Manual operation</td>
<td>None</td>
<td>Damaged</td>
<td>Workpieces rubbed</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dented</td>
<td>Workpieces collided</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12.24 Poka-Yoke/Zero Defects Checklist.

Under the “model” column, put the machine model, product model, or product name of the item for which the “poka-zero” evaluation is being done.

Date, Entered by, No.

The person filling out the check sheet should enter the current date and his or her name. In the “No.” column, put a checklist number or some other number that will help identify and manage the checklists.
If the operation pertains to the same process and the same model, put a serial number for the operation here.

Operation

As the evaluator watches the actions of each operator, he or she should vertically fill in the name of the operations in the order in which they are performed. In the next four columns to the right, fill in the operation method, description of defects, and cause of defects for each operation listed vertically.

Operation Method

This is where to fill in the basic method of operation. Generally, we divide the operation into human work and machine work by using one of the following two descriptions:

- Manual operation
- Mechanical operation

If the operation is mechanical, write down the specific name of the machine, such as “lathe” or “drilling machine.”

Standards

Write down any standard values given in the specifications, drawings, or quality control manual. If there are no clearly specified standards, enter “None.”

Inspection

Note whether an inspection was conducted following the operation in question. If one was conducted, describe the inspection method.

- **None**: No inspection.
- **All**: The inspector inspected every workpiece from the operation.
- **All/auto**: A machine automatically inspected every workpiece from the operation.
- **Sample**: Indicates sampling inspection.

Description of Defect

Give a short description of the type of defect, such as “wrong part” or “wrong hole position.”

Cause of Defect

Write down the main cause of the defect just described. For example, if the defect was described as “wrong part,” you might write “error in use of similar parts.” If it was “wrong hole position,” you might put “workpiece set-up backwards.”

Three-Point Evaluation

The checklist includes a three-point evaluation for “scoring” how often the defect in question occurs and how big an impact it has on other processes and on the company.

- **Frequency of occurrence**: Score from one to three points as shown below.
 - one point Does not occur at all
 - two points Sometimes
 - three points Often
- **Impact on processes**: Score the degree of impact the defect has on other processes.
 - one point No impact
 - two points Some impact, but can be reversed by making repairs
 - three points Wreaks havoc on other processes, especially downstream ones
- **Impact on company**: Indicate what impact the defect might have on the company if shipped to customers.
 - one point: No impact
 - two points: Might draw customer complaints, but can be quickly taken care of through after-sales service
 - three points: Can cause major problems for the company. It might take a lot of time and money to restore the company’s image to its former level.

- **Total points**: Multiply the points scored in each of the previous three categories

 \[
 \text{Total points} = \text{Frequency} \times \text{impact on processes} \times \text{impact on company}
 \]

 If the total points range between four and nine, the defect should be treated with *poka-yoke* /zero defects countermeasures. If the total points range between 12 and 27, the defect should be treated *immediately* and urgently with *poka-yoke* /zero defects countermeasures.

Three-Point Response

Here, we score the estimated degree of urgency and difficulty involved in responding to the defect.

- **Urgency**: Analyze the response measures and estimate how urgently they are needed.
 - one point: Not urgent at all
 - two points: Need to minimize the defect’s impact, but it is not urgent
 - three points: Must act immediately to prevent this defect from recurring

- **Difficulty**: Analyze the response measures and estimate their degree of difficulty.
one point: Can easily prevent defect’s recurrence by modifying jig or stand.

two points: Can prevent defect’s recurrence by developing and installing a *poka-yoke* device or zero-defects device within the process.

three points: It will either be difficult to respond within the process to prevent the defect’s recurrence, or it will require a lot of equipment investment.

- **Countermeasure:** Describe which level the *poka-yoke* or zero-defects countermeasure will address.

 three points: If countermeasure requires setting up a separate inspection process to sort out defective goods.

 The more fundamental the level the *poka-yoke* or zero-defects countermeasure will address, the higher the score should be among points one, two, and three.

- **Total points:** Use the following formula to compute the total for the three previous items.

\[
\text{Total points} = \text{Urgency} \times \text{difficulty} \times \text{countermeasure method}
\]

If the total points range between four and nine, the countermeasure will be relatively easy to carry out. If the total points range between 12 and 27, the defect-eliminating countermeasure will be quite difficult. It will require the cooperation of everyone in devising specific countermeasures.

Description of Response (Evaluation)

Write a detailed description of the countermeasure proposal and include whatever *poka-yoke* devices it includes. Add any evaluation remarks you might have.
Deadline and Person in Charge

Be sure to set a deadline for the countermeasure’s implementation and enter the name of the person in charge of the countermeasure. This will help keep track of progress in poka-yoke/zero-detects projects.

After completing this checklist, send reports to all departments concerned regarding items deemed especially urgent or important. Enlist their cooperation and investigative expertise in devising successful poka-yoke/zero defects measures.

Begin using the poka-zero checklist at major processes in the factory, then broaden its application to all processes. Ultimately, each factory should encourage its affiliated factories, such as its suppliers and subcontractors, to do the same.

This section has described just one example of how poka-yoke/zero defects checklists are used. Do not hesitate to revise this checklist to suit the needs of your own factory and its various processes.
Index

1973 oil crisis, 8
3 Mu's, 643
 eliminating, 151
5 Whys and 1 How, 24, 128, 129, 130–134
 waste discovery by, 208–210
5MQS waste, 152–153
 conveyor waste, 155–156
 disaster prevention measures waste, 159
 large machines waste, 154–155
 materials waste, 157
 parts waste, 157
 searching waste, 154
 shish-kabob production waste, 158
 walking waste, 153–154
 waste in air-processing machines, 156–157
 waste in defective goods production, 159
 waste in meetings, 158
 watching waste, 154
 workpiece motion waste, 158–159
5S approach, xii, 230, 237–238, 455, 689, 721
 as bridge to other improvements, 264
 as prerequisite for flow production, 344
 benefits, 238–243
 changeover 5S checklist, 512
 for factory improvement, 15–17
 in changeover procedure improvement, 502
 keys to success, 262–264
 meaning, 243–249, 250
 orderliness applied to jigs and tools, 307–319
 red tag strategy for visual control, 268–293
 red tags and signboards, 265–268
 role in changeover improvement, 533
 seiketsu (cleaned up), 246–247
 seiri (proper arrangement), 243–245
 seiso (cleanliness), 246
 seiton (orderliness), 245–246
 shitsuke (discipline), 247–249
 signboard strategy for visual orderliness, 293–306
 visible 5Ss, 249–262
5S badges, 255, 257
5S checklists, 258, 259
 for changeover, 818–819
5S contests, 258
5S implementation memo, case study, 286
5S maps, 261–262
5S memos, 755–757
5S mini motto boards, 255, 257
5S patrol score sheet, 258–259, 260
5S photo exhibit, 260
5S radar chart, 754
5S stickers, 257, 258
5S-related forms, 747
 5S checklists for factories, 747–749
 5S checklists for offices, 753
 5S checklists for workshops, 750–752
 5S memos, 755–757
 5S radar chart, 764
 cleaning checklist, 768–770
 display boards, 775–776
 five-point checklist to assess cleaned-up status, 771–774
 lists of unneeded inventory and equipment, 764–767
 red tag campaign reports, 761–763
 red tags, 758–760
5W1H Sheet, 131, 744–746
 and on-site experience, 233, 235
 first Why guidelines, 233
 follow-up after line stops, 234
 three 5W1H essentials, 233
 waste prevention with, 232–233
7 Ms plus E&I, 551, 552

A

A-B control, 676, 677
Acceptable Quality Level (AQL), 121, 122
Accident-prevention devices, 698
 poka-yoke, 699–709

Accidents
 plywood gluing process, 696
 reasons for, 685–687

Actual work environment. See **On-site experience**

Added-value work, 75

Address signboards, 299

Adjustment errors, 560

Adjustment waste, 510

Administrative waste, 173
 and clerical standardization, 229
disposal case study, 291

After-sales service part requests, 162

Air-processing machines, waste in, 156–157

Airplane andon, 466

Alerts, 672

Aluminum casting deburring operation, operations analysis table, 192

Amplifier-equipped proximity switches, 578
Andon systems, xiii, 11, 129, 231, 676, 679, 680, 682
 hire method for using, 465–466
 illuminating factory problems with, 464
 operation andon, 468–469
 paging andon, 465–466
 progress andon, 469–470
types of, 465
 warning andon, 466–468
 waste prevention using, 232

Anticipatory buying, 162

Anticipatory large lot production, 286–287

Anticipatory manufacturing, 162

Apparent minor defects, 680

Appropriate inventory, 96

Arm motions, 220–221

Arrow diagrams, 187–188, 211, 347, 730
 applications, 730
 examples, 731–732
 printed circuit board assembly shop, 189
tutoral, 187–190

ASEAN countries, xi

Assembly line
 applying *jidoka* to, 660
 extending *jidoka* to, 676–682
 jidoka o prevent oversights in parts assembly, 680–681
 stopping at preset position, 69, 678–680
 assembly method error, 678
 assembly parts, exchange of, 499

Assembly processes
 changeover example, 495
 changing to meet client needs, 20
 establishing specialized lines for, 371–373
 kanban in, 447–448, 448
 management of, 81
 manpower reduction example, 428
 multi-process operations in, 363
 standing while working in, 355–359
 warning andon for long, 468
 warning andon for short, 467

Assembly step omission, 592

Atitude adjustment, 143–144

Auditory control, 120, 231
 waste prevention with, 230–232

Auto feed time, 635

Auto parts machining line, 400

Auto-extract devices, 657

Auto-input devices, 657

Automatic shut-off, 672

Automation, 102–103, 111
 limitations of, 79
 reinforcement of waste by, 111
 vs. jidoka (human automation), 656, 657–658

Automobile assembly plant, parts shelves, 460, 461

Awareness revolution, 103, 104, 105, 159, 176, 199, 344, 641, 721
 as premise for JIT production, 46, 344
 as prerequisite for factory improvement, 13–15

B

Back-door approach, to waste discovery, 181–183

Back-to-the-source inspection, 168, 170–172

Backsliding, 229

Basic Spirit principles, 203, 204

Baton touch zone method, 359, 368, 491, 492

Bills of materials, 81, 83

Blade exchange, 498

Board insertion errors, 594

Body movement principles, 220–221, 220–223

Body, as main perceptive instrument, 134

Bolt removal, eliminating need for, 521, 536

Bolt tightening reductions, 520

Boltless approach, 535
Boltless die exchange, 523
Bolts
 as enemies, 509, 535
 making shorter, 535
Bottlenecked processes, 364
Bottom-up improvements, 134–139
Bracket attachment errors, 603
Brainstorming, 208
 factory problems as opportunities for, 208
Breakdowns
 for standard operations charts, 638
 reducing through 5Ss, 241
Bridge defects, 598
Brush omission errors, 609
Buyer’s market, 18
Bypass method, as leveling technique, 491–492

Capacity imbalances, 161–162
 between processes, 214–215
 overcoming through 5Ss, 239
 retention and, 161–162
Capacity leveling, 21
Capacity requirements planning (CRP), 442
Capacity utilization rates, 68, 331, 341, 684
 and variety of product models, 504
Capacity-load imbalances, 151
Capital procurement, 93
Caravan style operations, 407, 423
Case studies
 drilling machine worker separation, 669–672
 factory revolution, 287–289
 red tag strategy at Company S, 285–289
Cash-convertible assets, 93
Caster strategy, 349–350, 420. See also Movable machines
Chair-free operations, 19
Change, resistance to, 40, 201
Changeover 5S checklist, 512
Changeover costs, 73
 component costs, 73, 74
 variation in, 597
Changeover improvement list, 505, 810–811
 time graph analysis, 513
Changeover improvement procedures, 500–502
 applying 5Ss to eliminate waste, 502
 changeover improvement list, 505
 changeover kaizen teams for, 503–506
 changeover operations analysis, 501–502, 506–508
 changeover operations analysis charge, 508
 changeover results table, 507
 eliminating waste with 5Ss, 508–511
 external changeover procedures, 501
 identifying wasteful operations, 508–511
 improving external changeover, 502
 improving internal changeover, 502
 injection molding process case study, 515–517
 internal changeover procedures, 500
 kaizen team, 501
 public changeover timetable, 505
 transforming internal changeover to external changeover, 502
 waste, 501
Changeover improvement rules, 532–533
 role of 5Ss, 533–534
Changeover kaizen teams, 501, 503–506
Changeover operations, 71, 347, 723
 adjustment waste in, 510
 and introduction of synchronization, 373
 approach to changeover times, 499–500
 assembly line improvement example, 495
 avoidance of, and retention, 162
 balancing costs with inventory maintenance costs, 72
 changing standard parameters, 499
 exchange of dies and blades, 498
 exchanging assembly parts, 499
 external changeover time, 500
 general set-up, 499
 in JIT production system, 11
 internal changeover time, 500
 minimizing number, 216
 procedures for improvement, 500–532
 production leveling strategies for, 494–495
 rationale for improvement, 497–498
 reducing through 5Ss, 242
 replacement waste in, 509–510
 seven rules for improving, 532–539
 shortening time for, 494
 standardizing, 538–539
 time-consuming nature of, 216, 219
types of, 498–499
within cycle time, 514
Changeover operations analysis, 501–502, 506–508, 535
chart, 508
Changeover results table, 507, 815–817
Changeover standards, standardizing, 537
Changeover times, 499–500
Changeover work procedure analysis charts, 812–814
Checking, 691
Cleaned up checklist, detail, 256
Cleaned up, visibly, 253
Cleaning checklist, 768–770
Cleanliness, 16, 246, 690–691
five-point checklist, 772
of machinery, 119
visible, 253
Cleanliness check cards, 692
Cleanliness control board, 691
Cleanliness inspection checklist, 254, 690, 692
Cleanliness, Checking, and Oiling (CCO), 689–693
training in, 708
Cleanup, 16, 246–247
Cleanup waste, in external changeover procedures, 511
Clerical standardization, 229
Client needs, as determinant of capacity, 22
Client orders, as basis for cycle time/pitch, 70
Color coding, 253
for maintenance, 693
for oil containers, 319
in changeover improvements, 534
in \textit{kaizen} boards, 462
Color mark sensors, 574, 580
applications, 582
Combination charts, 224
clarifying human work \textit{vs}. machine work with, 664
for standard operations, 223–226
steps in creating, 630–632
wood products manufacturer example, 226, 227
Communication
about 5S approach, 263
errors in, and defects, 555–556, 558
Compact equipment, 19, 117–118, 340–341, 427, 484
as condition for flow production, 340–341, 342
building flexibility through, 419
compact shotblaster, 354
compact washing unit, 356
cost savings from, 354
diecast factory case study, 375–376, 377
for multi-process operations, 398–399
separating human and machine work with, 431
Company cop-out, 107, 108
Company-wide efficiency, 68
Company-wide involvement, with 5S approach, 262
Complexity
and waste, 648
in moving parts, 694
Component efficiency, 66
Computer-based management, 81
Computerization
and waste, 83
expendable material created by, 157
waste-making, 81
Computers
failure to shorten physical lead-time, 5
red tagging, 278–281
Confirmed production schedule, 439
Constant demand, products \textit{vs}. parts, 475–476
Contact devices, 570
differential transformers, 572
limit switches, 570
microswitches, 570
Container organization, for deliveries, 385
Continuous flow production time, 19
Continuous improvement, 211
Control devices, 567
Control standardization, 228
Control/management waste, 149
Conveyance liveliness index, 304
Conveyance waste, 69, 149, 163–166, 173, 176, 180, 187, 336, 355–356, 392
links to retention, 164
Conveyor systems
appropriate use of, 70–71
improving equipment layout to eliminate, 79
waste hidden in, 67
Conveyor use index, 137
Conveyor waste, 155–156
Cooperative operation confirmation chart, 788–790
Cooperative operations, 367–371, 419
improvement steps for, 369
labor cost reduction through, 427–430
Index

I-5

placing parts in front of workers for, 370
VCR assembly line example, 429
Cooperative operations zones, 370–371
Coordinated work, waste in, 67
Corporate balance sheet, inventory in, 94
Corporate culture, 15
Corporate survival, xii
Corrective maintenance, 688
Cost reduction, 69–71
 and effort invested, 71–74
 and profit, 36
 resistance arguments, 200–201
 through 5Ss, 239
 through jidoka, 659
Cost, in PQCDs approach, 3
Cost-up method, 35
Countable products, 119
Craft unions, vs. enterprise unions, 393–394
Crane operations, safety poka-yoke, 706
Cube improvements, 27
Current assets, 93
Current conditions, analysis to discover waste, 185–198
Current liabilities, 94
Current operating conditions, 24
Customer complaints, vs. defects, 547–548
Customer lead-time, 99
Customer needs, loss of concern for, 113–114
Customers, role in efficiency improvement, 62–65
Cutting tools
 layout, 317
 orderliness applied to, 316–319
 placement, 317
 storage, 318
 types of, 317
Cycle list method, 487–489
 reserved seats and, 489–490
Cycle tables, 485
Cycle time, 19, 22, 332, 337, 363, 433, 630, 634, 637, 647. See also Pitch
 and production leveling, 421–422
 and standard operations, 625
 as leveling technique, 485–487
 calculating, 487
 completing operations within, 636
 factors determining, 70
 for standard operations charts, 637
 overproduction and, 677
 smaller equipment for maintaining, 398
 vs. speed, 116

D

Deburring omissions, 589
Defect identification, 546
 and causes of defects, 558–561
 and factors behind defects, 550–558
 defects as people-made catastrophes, 546–547
 inspection misunderstandings, 547–550
Defect prevention, 168, 177
 assembly step omission, 592
 board insertion errors, 594
 bracket attachment errors, 603
 bridge defects, 598
 brush omission errors, 609
 deburring omissions, 589
 defective-nondefective part mixing errors, 613
 drilling defects, 600, 675–676
 E-ring omission errors, 611
 equipment improvements for, 640
 gear assembly errors, 614
 grinding process omission, 591
 hole count errors, 588
 hole drilling omission, 593
 hose cut length variations, 597
 incorrect drill position, 601
 left-right attachment errors, 615
 mold burr defects, 674–675
 nameplate omission errors, 608
 packing omission errors, 610
 part omission errors, 607
 pin dimension errors, 595
 press die alignment errors, 596
 product set-up errors, 602
 spindle hole punch process omission, 590
 tap processing errors, 606
 tapping operations, 673–674
 through 5Ss, 241
 through automatic machine detection, 403
 through jidoka
 through simplified production operations, 549
 torque tightening errors, 599
 with kanban, 441–442
 with multi-process operations, 392
 workpiece direction errors, 605
 workpiece positioning errors, 605
 wrong part assembly errors, 612
Defect production waste, 176–177, 180
Index

Defect reduction, 168, 544
 with compact machinery, 399
Defect signals, 567
Defect-prevention devices, 659, 669, 673
Defective assembly parts, 678
Defective item display, 457, 458
Defective products
 and inventory, 92
 counting, 119
 ending downstream processing of, 544–545
 factories shipping, 542
 increases with shish-kabob production, 158
 increasing inspectors to avoid, 542–544
 inventory and, 90–91
 noncreation of, 545–546
 waste in making, 159
Defective/nondefective part mixing errors, 613
Defects
 and communication errors, 555–556, 557, 558
 and inspection, 548
 and production method errors, 555, 557
 and surplus products, 549
 as human-caused catastrophes, 546–547
 causes, 558–561
 due to human errors, 551, 553, 557, 558
 due to machine errors, 554–555, 557
 factors behind, 550–558
 in materials, 553–554, 557
 relationship with errors and inspection, 543
 stoppages for, 567
 ten worst causes, 561
 vs. customer complaints, 547–548
Delays, reducing through 5Ss, 242
Delivery
 and loading methods, 379
 and transport routes, 380–382
 and visible organization of containers, 385
 applying flow concept to, 378–382
 color coding strategy, 384
 FIFO strategy, 384–385
 frequency of, 380
 in PQCDS approach, 3
 self-management by delivery companies, 383
Delivery company evaluation table, 382, 791–793
Delivery schedules, shortening of, 2
Delivery sites
 applying flow concepts to, 382–385
 establishment of, 383
 product-specific, 384
Detach movement, automation of, 671–672, 673
Deterioration, 686
 and accidents, 685
 preventive measures, 688
 reversing, 688
Die exchange, 498
 improvement for boltless, 523
 minimizing, 497
Die height standardization, 526–527
Die storage sites, proper arrangement and orderliness applied to, 530–531
Diecast deburring line, 351
Diecast factory, flow production case study, 373–378
Differential transformers, 572
Dimensional tolerances, 686
Dimensions, enlarging, 311
Disaster prevention measures, waste in, 159
Discipline, 16, 247–249
 JIT Improvements as, 130
 visible, 254–255
Displacement sensors, 574
 applications, 579–580
Display boards, 775–776
Distribution, applying JIT to, 47
Diversification, 2, 117, 415, 416
 of consumer needs, 62
 through 5Ss, 242
Do it now attitude, 236
Doing, as heart of JIT improvement, 133
Dot it now attitude, 236
Double-feed sensors, 576
 applications, 584
Downstream process control inspection method, 169, 170
Drill bit replacement, external changeover improvement, 532, 533
Drill bit storage method, improvements, 235
Drill operation, before improvement, 670
Drill position errors, 601
Drilling defects, 600
 avoiding downstream passing of, 675–676
Drilling machine, 662
 detach movement, 671–672
 hold motion automation, 671
jidoka case study, 669–672
Index ◆ I-7

safety plate for, 703, 704
separating human from machine work on, 402

E

E-ring omission errors, 611
Economical lot sizes, 72
Economy of motion, 642
Economy of scale, 45
Efficiency
and production leveling, 69
approaches to, 59–61
customer as driver of, 62
estimated vs. true, 59–61
individual and overall, 66–69
maximizing at specific processes, 484
overall, 484, 492
raising in individual processes, 68
shish-kabob vs. level production
approaches, 484, 486
Electric screwdrivers, combining, 315
Emergency andon, 464
Employees, as basic asset, 108
End-of-month rush, 162
Energy waste
due to inventory, 325
through inventory, 91
Engineering technologies, applying JIT
improvement to, 334
Engineering-related forms, 777
5S checklist for changeover, 818–819
changeover improvement lists, 810–811
changeover results tables, 815–817
changeover work procedure analysis
charts, 812–814
cooperative operation confirmation chart, 788–790
delivery company evaluation charts, 791–793
JIT delivery efficiency list, 794–796
line balance analysis charts, 785–787
model and operating rate trend charts, 805–807
multiple skills evaluation chart, 799–801
multiple skills training schedule, 797–798
P-Q analysis lists/charts, 777–781
parts-production capacity work table, 822–824
poka-yoke/zero defects checklist, 820–821
process route diagrams, 782
production management boards, 802–804
public changeover timetables, 808–809
standard operations combination chart, 825–826
standard operations form, 831–833
summary table of standard operations, 827–828
work methods table, 829–830
Enterprise unions, vs. craft unions, 393–394
Enthusiasm, as prerequisite for innovation, 143, 144
Equal-sign manufacturing cells, 362
Equipment
applying jidoka to, 660
automation and human automation, 102–103
compact, 19, 117–118
ease of maintenance, 119
ease of operation, 118
ergonomics recommendations, 222
for flow production, 389
improvements facilitating standard
operations, 640
modification for multi-process operations, 406
movability, 64–65, 117–118
obtaining information from, 119–120
shish-kabob vs. flow production
approaches, 331
standardization in Japanese factories, 395
versatility and specialization, 116–117
vs. work operations improvements,
103–108
Equipment breakdown, 708
acceptance of, 683
apparent minor defects, 680
below-expectation performance, 686
breakdown stage, 686
intermittent stoppage stage, 686
latent minor defects stage, 680
preventing, 693–695
stages, 685, 687
Equipment constitution, 694
Equipment costs
and jidoka, 666
vs. labor costs, 658
Equipment improvement, 103, 104, 106
and company cop-out, 108
based on manufacturing flow, 114–120
cost of, 104, 109–111
irreversibility of, 112, 113–114
not spending money on, 207–208
reinforcement of waste by, 111–112
twelve conditions for, 114–120
typical problems, 108–114
Equipment improvement problems, 110
Equipment layout
applying jidoka to, 662
as condition for flow production, 336–337, 342
for flow production, 389
in order of processing, 353–355
shish-kabob vs. flow production approaches, 350
Equipment signboards, 295
Equipment simplification, 400
Equipment waste, 149
Error control, 567
Error prevention boards, 457, 458
Errors, relationships with defects and inspection, 543
Estimate-based leveling, 23
Estimated efficiency, 59–61
Estimated lead-time, 98–99
Estimated production schedule, 439
Estimated quality, 122
Excess capacity, 174
Excuses, 202, 205
Expensive improvements, failure of, 206
Experiential wisdom, 210–211
External changeover improvements, 529–532
carts reserved for changeover, 531–532
drill bit replacement example, 532
proper arrangement and orderliness in die storage sites, 530–531
External changeover procedures, 501
cleanup waste in, 511
improving, 502
preparation waste in, 510
waste in, 510–511
External changeover time, 500

F

Factory
as best teacher of improvements, 134–139
as living organism, 230
Factory bath, 270
Factory graveyards, 73
Factory improvement
5Ss for, 15–17
awareness revolution prerequisite, 13–15
shortening physical lead-times through, 6
vs. JIT improvements, 13
Factory layout diagram, 188
Factory myths
anti-JIT production arguments, 40–44
fixed ideas and JIT production approach, 44–47
sales price/cost/profit relations, 35–40
Factory problems, 326
as brainstorming opportunity, 208
illuminating with andon, 464
stopgap responses to, 150
ubiquitousness of, 251
Factory revolution, 287–289
Factory-based innovation, xiii, 133
Factory-wide efficiency, 68
Feed motion, 664
applying jidoka to, 665
jidoka, 670, 671
Feet, effective use of, 221–222, 223
Fiber optic switches, 575, 579
Finance, inventory and, 92–95
Fine-tuning waste, 537
removal, 523–527
Fingernail clipping debris, device preventing, 247
First-in/First-Out (FIFO), 302–303, 461, 462
as delivery strategy, 384–385
Five levels of quality assurance achievement, 542–546
Five whys, 24, 130–134, 183, 184, 210, 236
applying to changeover improvements, 555
waste discovery through, 208–210
Five-point checklist, 771
for cleanliness, 772
for proper arrangement, 772
Five-point cleaned up checklist, 255, 257–258, 773, 774
Fixed ideas, 235
about conveyors, 156
avoiding for waste prevention, 235–236
direct challenge to, 43
eliminating for waste removal, 204
kanban, 447
large lot production, 417
wall of, 210
Fixed liabilities, 94
Index

Flexibility
 in baton touch zone method, 491
 mental origins of, 420
Flexible production, 419
Flexible staff assignment system, 63, 65, 417, 419
Flow analysis, 188
 summary chart, 189, 190
Flow components, 56
Flow control, 567
Flow devices, 108, 109
Flow manufacturing, xii, 9–10, 49, 64, 70, 79–84. See also One-piece flow and line improvements, 25
 making waste visible by, 17
 role in JIT introduction, 17–19
 seven requirements, 19
Flow of goods, 159–160, 641, 646
 device improvements facilitating, 638–640
Flow production, 50, 321, 564–565
 and evils of inventory, 324–328
 and inventory accumulation, 321–324
 applying to delivery sites, 382–385
 approach to processing, 329–330
 at diecast factory, 374, 376
 between factories, 332–333, 378–385
 caster strategy, 349–350
 defect prevention with, 721
 diecast factory case study, 373–378
 eight conditions for, 333–341
 equipment approach, 331
 equipment layout in, 330
 for production leveling, 492–494
 in medical equipment industry, 423
 in multi-process operations, 388
 in-process inventory approach, 331
 interrelationship of factors, 343
 lead time approach, 331
 operator approaches, 330–331
 preparation for, 344–350
 procedure for, 350–357
 rational production approach in, 330
 reducing labor cost through, 422–424
 sink cabinet factory example, 493
 steps in introducing, 343–373
 straight-line method, 340
 U-shaped manufacturing cell method, 340
 vs. shish-kebab production, 328–332
 waste elimination techniques, 341–342
 within-factory, 332–333, 333–341
Flow shop layout, 395
Flow unit improvement, 639

Forms, 711–714
 5S-related, 747–776
 engineering-related, 777–833
 for standard operations, 626–628
 JIT introduction-related, 834–850
 overall management, 716–729
 waste-related, 730–746
Free-floating assembly line, 356, 357
Full lot inspection, 120–122
Full parallel operations, 225
Full work system, 175, 365, 676–677
 A-B control, 677
 devices enabling, 368
 pull production using, 367
Function-specific inventory management, 305

G

Gear assembly errors, 614
General flow analysis charts, 733–734
General purpose machines, 331, 340
Golf ball kanban systems, 450–451
Graph time, 633
Gravity, vs. muscle power, 221
Grinding process omission, 591
Groove processing lifter, separating human/machine work, 649
Group Technology (GT) lines, 347
 for line balancing, 491

H

Hand delivery, 365
Hand-transferred one-piece flow, 337, 338
 pull production using, 366
Handles/knobs, 223
Hands-on improvements, 9, 140
Height adjustments, avoiding, 538
Hirano, Hiroyuki, xiii
Hold motion, automation of, 671
Hole count errors, 588
Hole drilling omission, 593
Horizontal development, 24–25, 391
Hose cut length variations, 597
Household electronics assembly, labor cost reduction example, 428
Human automation, 12, 62, 102–103, 159, 554, 655. See also Jidoka (human automation) and removal of processed workpieces, 668 and setup of unprocessed workpieces/startup, 669 applying to feeding workpieces, 665 applying to return to starting positions, 667 for multi-process operations, 402 Human error waste, 173, 674 and defect prevention, 551–553 basic training to prevent, 562–563 defects and, 546–547 eliminating by multiple skills training, 563 minimizing, 177 Human movement body movement principles, 220–223 removing wasteful, 217–223 Human work, 658 clarifying with combination charts, 664 compact PCB washer example, 431 procedure for separating from machines, 682–689 separating from machine work, 64, 118, 400–402, 406, 430–432, 640, 649–650, 660–662, 702, 703 Humanity, coexistence with productivity, 387–388

Injection molding process
 burr defect prevention, 674
 internal changeover improvement case study, 515–517

Injuries
 reasons for, 695–697
 reducing through 5Ss, 241

Innovation, 13, 37
 and JIT production, 47–49
 enthusiasm as prerequisite for, 143
 factory-based, xiii
 in JIT production, 47–49
 JIT production as, 27

Inspection, 56, 160, 187
 back-to-the-source inspection, 170–172
 eliminating need through jidoka, 674
 failure to add value, 168
 failure to eliminate defects, 120
 increasing to avoid defective products, 542–544
 information inspection, 169
 preventive, 564
 relationship to defects, 543, 547–550
 sorting inspection, 169
 Inspection buzzers, waste prevention with, 232

Inspection functions
 building into JIT system, 119
 full lot inspection, 120–122
 sampling inspection, 120–122
 Inspection waste, 149

Inspection-related waste, 167–168

Integrated tool functions, 223

Intensive improvement, 266–268
 timing, 268

Interest payment burden, 324, 326
 inventory and, 90

Intermittent stoppage stage, in equipment breakdown, 686

Internal changeover improvements, 518, 534–535
 bolt tightening reductions, 520
 boltless die exchange, 523
 die height standardization, 526–527
 eliminating need to remove bolts, 521
 eliminating nuts and washers, 521
 eliminating replacement waste, 518–523
 eliminating serial operations, 527–529
 establishing parallel operations, 528
 one-touch tool bit exchange, 522
 protruding jigs vs. manual position setting, 524
 removing fine-tuning waste, 523–527
 spacer blocks and need for manual dial positioning, 526
 spacer blocks and need for manual positioning, 524–525
 tool elimination, 519–520

Internal changeover procedures
 changing to external changeover, 511–518, 534
 improving, 500, 502
 PCB assembly plant case study, 513–514
 transforming to external, 502
 turning into external changeover, 511–518
 waste in, 509–510
 wire harness molding process case study, 517–518

Internal changeover time, 500

Inventory
 advance procurement requirements, 325
 and conveyance needs, 90
 and defects, 90–91, 92
 and energy waste, 91
 and finance, 92–95
 and interest-payment burden, 90
 and lead-time, 87–89, 88
 and losses due to hoarded surpluses, 325
 and materials/parts stocks, 91
 and price cutting losses, 325
 and ROI, 95
 and unnecessary management costs, 91
 as cause of wasteful operations, 325
 as evasion of problems, 176
 as false buffer, 95, 101
 as JIT consultant’s best teacher, 89
 as opium of factory, 92–95
 as poor investment, 95–98
 breakdown by type, 161
 concealment of factory problems by, 91, 92, 326, 327
 evasion of problems with, 163
 evils of, 90–92, 324–328
 FIFO storage method, 303
 in corporate balance sheet, 94
 incursion of maintenance costs by, 325
 interest payment burden due to, 324
 management requirements, 325
 product, in-process, materials, 101, 102
 red tagging, 281–282
 reducing with once-a-day production scheduling, 480–481
shish-kabob vs. level production approaches, 484–485
space waste through, 90, 325
unbalanced, 161
wasteful energy consumption due to, 325
with shish-kabob production, 158
zero-based, 98–102
Inventory accumulation
and caravan operations, 322
and changeover resistance, 322
and distribution waits, 322
and end-of-month rushes, 323
and faulty production scheduling, 323
and just-in-case inventory, 323
and obsolete inventory flow, 321
and operator delays, 322
and resistance to change, 322
and seasonal adjustments, 323–324
and standards revision, 323
and unbalanced capacity, 322
multiple-process sources of, 322
reasons for, 321
Inventory assets, 715
Inventory control, 126
Inventory flow, obsolete, 321
Inventory graveyard, 324
Inventory liveliness index, 303–304
Inventory maintenance costs, 72
Inventory management
function-specific method, 305
product-specific method, 305
with kanban, 436
Inventory reduction, 87, 89, 125
case study, 288, 289, 377
Inventory stacks, 303
Inventory waste, 175–176, 180
Irrationality, 152, 643
eliminating, 151
Item characteristics method, 568, 569
Item names, for signboards, 299–300
Ivory tower syndrome, 22

J

Japanese industrial structure, 1980s
transformation of, xi
Jidoka (human automation), 12, 62, 102–103, 103–108, 655, 724
applying to feeding workpieces, 665
automation vs., 656, 657–658
cost considerations, 667, 669
defect prevention through, 672–676
detach movement, 671–672
drilling machine case study, 669–672
extension to assembly line, 676–682
feed motion, 670
full work system, 676–677
manual labor vs., 655, 656
mechanization vs., 656
preventing oversights in nameplate attachments, 681–682
steps toward, 655–657
three functions, 658–660
Jigs
5-point check for orderliness, 256
applying orderliness to, 307
color-coded orderliness, 368–369
combining, 314
easy-to-maintain orderliness for, 307
eliminating through orderliness strategies, 313–316
indicators for, 308
outlined orderliness, 309
JIT delivery efficiency list, 794–796
JIT improvement cycle, 144
roles of visual control tools in, 473
JIT improvement items, 837–840
JIT improvement memo, 836
JIT improvements, 12, 13
“doing” as heart of, 133
and changeover costs, 74
and parts list depth, 82
as discipline, 130
as religion, 138
as top-down improvement method, 135
basis in ideals, 12
case study, 288
cube improvements, 27
factory as true location of, 34
from within, 139–143
hostile environment in U.S. and Europe, 107
improvement lists, 33–34
improvement meetings, 32–33
improvement promotion office, 31–32
lack of faith in, 41
line improvements, 25–26
plane improvements, 26–27
point improvements, 25
promoting and carrying out, 30–34
requirement of faith, 139
sequence for introducing, 21
seven stages in acceptance of, 140–144
ten arguments against, 299
vs. JIT production management, 7
vs. labor intensification, 86
weekly improvement days for, 32

JIT innovation, 13
JIT introduction steps, 12–13

5Ss for factory improvement, 15–17
awareness revolution step, 13–15
department chiefs’ duties, 28–29, 30
division chiefs’ duties, 28
equipment operators’ duties, 30
factory superintendents’ duties, 28–29
flow manufacturing, 17–19
foremens’ duties, 30
leveling, 20–22
president’s duties, 28
section chiefs’ duties, 30
standard operations, 23–24

JIT introduction-related forms, 834
improvement memo, 836
improvement results chart, 844–845
JIT leader’s report, 849–850
JIT Ten Commandments, 834–835
list of JIT improvement items, 837–840
weekly report on JIT improvements, 846–848

JIT leader’s report, 849–850
JIT Management Diagnostic List, 715–718

JIT production

adopting external trappings of, 472
as new field of industrial engineering, xii
company-wide promotion, 28, 29
elimination of waste through, xi
define five stages of, 719, 721, 726, 728
guidance, education and training in, 30
hands-on experience, 30
in-house seminar, 343
innovation in, 47–49
linked technologies in, 334
promotion and sales, 31
radar chart, 727
setting goals for, 28
structure, 720

JIT production management
distinguishing from JIT improvements, 7
vs. conventional production management, 1–3

JIT production system
as total elimination of waste, 145
changeover, 11

flow manufacturing, 9–10
from vertical to horizontal development, 24–27
human automation, 12
introduction procedure, 12–14
jidoka, 12
kanban system, 10
leveling, 11
maintenance and safety, 12
manpower reduction, 10
multi-process handling, 10
organizing for introduction of, 27–30
overview, 7–9
quality assurance, 11
standard operations, 11–12
steps in establishing, 14
view of waste, 152
visual control, 10–11

JIT radar charts, 719, 727, 729
JIT study groups, 15
JIT Ten Commandments, 834–835
Job shop layout, 395
Just-in-case inventory, 323
Just-In-Time

anatomy of, 8–9
and cost reduction, 69–71
as consciousness improvement, 139–143
functions and five stages of development, 728
innovation and, 47–49
view of inspection work, 168

K

Kaizen boards, 462
visual control and, 471–473
with improvement results displays, 463
Kanban systems, xii, xiii, 7, 8, 10, 11, 52, 54, 174, 231, 365, 692, 722
administration, 447–451
and defect prevention, 441–442
and downstream process flow, 441
and in-process inventory, 435
applying to oiling, 693
appropriate use of, 70–71
as autonomic nervous system for JIT production, 440
as tool for promoting improvements, 441
as workshop indicators, 442
differences from conventional systems, 435–437
factory improvements through, 440–441
fixed ideas about, 447
functions, 440–441
in processing and assembly lines, 447–448
in-factory kanban, 444–445
novel types, 450–451
production kanban, 445
production leveling through, 442
purchasing-related, 449–450
quantity required, 445–447
rules, 441–442
signal kanban, 445
supplier kanban, 443
types of, 442–447
visual control with, 457
vs. conventional production work orders, 437–439
vs. reordering point method, 435–437
waste prevention with, 232

L

L-shaped line production, 360
Labor cost reduction, 415, 418, 722
and elimination of processing islands, 421
and mental flexibility, 420
and movable equipment, 420–421
and multi-process operations, 421
and production leveling, 421–422
and standardized equipment and operations, 421
approach to, 415–418
display board for, 433–434
flow production for, 422–424
multi-process operations for, 424–426
multiple skills training schedule for,
432–433
steps, 419–422
strategies for achieving, 422–432
through cooperative operations, 427–430
through group work, 426–427
through separating human and machine work, 430–432
visible, 432–434
vs. labor reduction, 417–418
Labor cost reduction display board, 433–434
Labor intensity/density, 84–86
vs. production output, 86
Labor per unit, 649
Labor reduction, 63, 418, 647
vs. labor cost reduction, 417–418
vs. worker hour minimization, 66–69
Labor savings, 418
Labor unions, 107. See also Craft unions;
Enterprise unions
and multi-process operations, 393–394
Labor-intensive assembly processes, 217
Large lot sizes, 18, 62, 73, 278, 321, 398, 483, 598
and changeover times, 216
and machine waste, 155
as basis of production schedules, 476
case study, 286–287
fixed ideas about, 417
switching to small-lot flow from, 639
Large machines waste, 154–155, 331
Large-scale container deliveries, 381
Latent minor defects, 680
Latent waste, 198
Lateral development, 27, 378, 505, 506
Lateral improvement makers, 167
Lathes, 682
three kinds of motion, 663
worker separation from, 702
Layout improvement, 638
Lead-time
and inventory, 88
and lot sizes, 498
and production lot size, 72
and work stoppage, 59–61
estimated vs. real, 98–99
inventory and, 87–89
lengthened with shish-kabob production, 158
paper, 4, 5
physical, 5
product, 4
reduction with multi-process operations, 393
shish-kabob vs. flow production approaches, 331, 486
shish-kabob vs. level production approaches, 484–485
shortening by reducing processing time, 55
Leadership, for multi-process operations, 404–405
Left-right attachment errors, 615
Leg motion, minimizing, 221
Level production, 475, 723. See also Leveling
 as market-in approach, 482
 vs. once-a-day production, 481
 vs. shish-kabob production, 482–485, 486
Leveling, 50, 476. See also Level production;
 Production leveling
 and production schedule strategies, 477–482
 approach to, 476–477
 capacity and load, 21
 estimate-based, 23
 reality-based, 23
 role in JIT introduction, 20–22
 role in JIT production system, 11
 techniques, 482–492
Leveling techniques, 485
 baton touch zone method, 491
 bypass method, 491–492
 cycle list method, 487–489
 cycle tables, 485
 cycle time, 485–487
 nonreserved seat method, 487–489
 reserved seat method, 489–490
Limit switches, 403, 470, 570, 676, 677, 706, 708
Line balance analysis charts, 785–787
Line balancing
 at PCB assembly plant, 514
 SOS system for, 217
 strategies for, 491
Line balancing analysis tables, 358
Line design, based on P-Q analysis, 346, 347
Line efficiency, 68
Line improvements, 25–26
Line stops, 470
 5W1H follow-up after, 234
 at preset positions, 678–680
 with poka-yoke devices, 675
Lined up inventory placement, 304–306
Linked technologies, in JIT production, 334
Litter-preventive device, for drill press, 248
Load leveling, 21
Loading methods, 379
Long-term storage, case study, 291
Lot sizes, 45, 87
 and lead time, 72
 large vs. small, 71–74
Lot waiting waste, 215–216, 219
 waste removal, 219
Low morale, 16

M

Machine errors
 and defect prevention, 554–555
 poka-yoke to prevent, 564
Machine operating status, andon
 notification of, 466
Machine placement, waste and, 185
Machine signboards, 295
Machine standardization, 228
Machine start-up, applying jidoka to, 663, 668
Machine/people waiting, 214
Machines
 as living things, 120–122
 shish-kabob vs. level production
 approaches, 484, 486
 with strong constitution, 708
Machining line, full work system, 677
Maintenance, 683, 725
 and accidents, 685–687
 and possible utilization rate, 684–685
 breakdown prevention, 693–695
 Cleanliness, Checking, and Oiling (CCO)
 approach, 689–693
 defined, 684–689
 existing conditions, 683–684
 full-fledged, 708–709
 improving through 5Ss, 241
 in JIT production system, 12
 of equipment, 119
Maintenance campaigns, 687–689
Maintenance errors, 560
Maintenance prevention, 688
Maintenance technicians, 689
Make-believe automation, 79
Man, material, machine, method, and
 management (5Ms), 152, 153
Management-related forms, 715
 five stages of JIT production, 719, 721–725
 JIT Management Diagnostic List, 715–718
 JIT radar charts, 719
Manpower flexibility, 338
Manpower needs, based on cycle time, 22
Manpower reduction, 10, 62–65, 63, 337, 392
household electronics assembly line
example, 428
improving efficiency through, 61
through flow production, 422–424
Manual dial positioning, eliminating with spacer blocks, 526
Manual labor, 655, 656
Manual operations, two-handed start/stop, 220
Manual position setting, eliminating need for, 524
Manual work time, 635
Manual-conveyance assembly lines, progress andon in, 469
Manufacturing
as service industry, 1
five essential elements, 553
nine basic elements (7Ms plus E&I), 552
purpose of, 1
Manufacturing flow, as basis for equipment improvements, 114–120
Manufacturing process, components, 56
Manufacturing waste, 149
Market demand fluctuations, unsuitability of kanban for, 436
Market price, as basis of sales price, 35
Market-in production, xii, 416, 555
level production as, 482
Marshaling, 306
Mass production equipment, 216, 219
Material handling
building flexibility into, 419
minimizing, 176
vs. conveyance, 164
Material handling costs, 159, 163
Material requirements planning (MRP), 52
Materials flow
device improvements facilitating, 638–640
standard operations improvements, 641
Materials inventory, 101, 102
Materials waiting, 215, 218
Materials waste, 157
Materials, and defect prevention, 553–554
Measuring tools
orderliness for, 318
types, 319
Mechanization, 656
Medical equipment manufacturing,
manpower reduction example, 423
Meetings, waste in, 158
Mental improvements
vs. implementation, 140
vs. real improvements, 130–134
Metal passage sensors, 574
applications, 581
Microswitch actuators, 571
Microswitches, 570, 674
Milling machine, safety pokayoke for, 705–706
Minimum labor cost, 62
Missing item errors, 587, 607–611, 678
Mistake-proofing, 119
Mistakes, correcting immediately, 207
Mixed loads, 379
Mixed-model flow production, 492
Mizusumashi (whirligig beetle), 465
Model and operating rate trend charts, 805–807
Model lines, analyzing for flow production, 348
Mold burr defects, prevention, 674–675
Monitoring, vs. managing, 123–126, 126–130
Motion
and work, 74–79
as waste, 76, 78, 79, 84
costs incurred through, 77
economy of, 642
lathes and, 663
vs. work, 657, 659
Motion study, 642
Motion waste, 639
improvements with standard operations, 639
Motor-driven chain, 694
Movable machines, 64–65, 65, 117–118, 165, 354, 420
and caster strategy, 349–350
building flexibility through, 419
Movement
as waste, 178
improving operational efficiency, 642–649
non-added value in, 190
Muda (waste), 643
Multi-process operations, 10, 19, 64, 330, 359, 362–363, 387–388, 417, 722
abolishing processing islands for, 396–398
and labor unions, 393–394
as condition for flow production, 337–338
basis for pay raises in, 394
compact equipment for, 398–399
effective leadership for, 404–405
equipment layout for, 389
equipment modification for, 406
designed for, 406
factory-wide implementation, 405
human assets, 389
human automation for, 402–403
human work \textit{vs.} machine work in, 400–402
in wood products factory, 425
key points, 395–404
labor cost reduction through, 424–426
multiple skills training for, 400
one-piece flow using, 338
operational procedures for, 389
\textit{poka-yoke} for, 402–403
precautions, 404–406
promoting perseverance with, 406
questions from western workers, 393–395
safety priorities, 403–404, 406
simplified work procedures for, 404
standard operations improvements, 639
standing while working for, 399–400
training costs for, 394–395
training for, 421
training procedures, 407–413
temporary operations in, 405
U-shaped manufacturing cells for, 395–396
\textit{vs.} horizontal multi-unit operations, 388–393
Multi-process workers, 331
\textit{as} condition for flow production, 339
at diecast factory, 377
Multi-skilled workers, 19, 390
and standard operations, 650–651
building flexibility through, 419
Multi-unit operations, 338, 391
\textit{vs.} multi-process operations, 388–393
Multi-unit process stations, 390
Multiple skills contests, 405
Multiple skills evaluation chart, 799–801
Multiple skills maps, 432
Multiple skills score sheet, 410, 432
Multiple skills training, 425, 651
\textit{defect} prevention with, 563
\textit{for} multi-process operations, 400
schedule for, 432–434
Multiple skills training schedule, 797–798
Multiple-skills training, 407
demonstration by workshop leaders, 412
during overtime hours, 409
five-level skills evaluation for, 408
hands-on practice, 412
importance of praise, 413
in U-shaped manufacturing cells, 410
schedule, 409
team building for, 408
trainer roles, 413
workshop leader roles, 411
\textit{Mura} (inconsistency), 643
\textit{Muri} (irrationality), 643
Mutual aid system, 65

\textbf{N}

Nameplate omission errors, 608
preventing with \textit{jidoka}, 681–682
Needed items, separating from unneeded items, 266
Net time, for standard operations charts, 637
Newly Industrialized Economic Societies (NIES), xi
Next process is your customer, 51, 54, 132
Non-value-added steps
\textit{as} waste, 147, 171
in inspection, 170
in retention, 163
Noncontact switches, 572
color mark sensors, 574
displacement sensors, 574
double-feed sensors, 576
metal passage sensors, 574
outer diameter/width sensors, 574
photoelectric switches, 572, 574
positioning sensors, 574
proximity switches, 574
vibration switches, 574
Nondefective products, counting, 119
Nonreserved seat method, 487–489
Nonunion labor, 394
Nuts and washers, eliminating as internal changeover improvement, 521

\textbf{O}

Oil containers, color-coded orderliness, 319
Oil, orderliness for, 318–319
Oiling, 691–693
\textit{kanban} for, 693
On-site experience, 190
\textit{and} 5W1H method, 233, 235
by supervisors, 230, 233, 235
I-18 Index

Once-a-day production scheduling, 480–482
Once-a-month production scheduling, 478–479
Once-a-week production scheduling, 479–480
One how, 24, 128, 130–134, 183
One-piece flow, 19, 64, 115–116, 165, 185, 419, 639. See also Flow manufacturing
as condition for flow production, 335–336
discovering waste with, 183–185
hand-transferred, 338
in multi-process operations, 388
maintaining to avoid creating waste, 351–353, 353
revealing waste with, 350–351, 352
switching to, under current conditions, 184
using current equipment layout and procedures, 336
One-touch tool bit exchange, 522
Operation andon, 464, 468–469
Operation errors, 560
Operation management, 81
Operation method waiting, 215, 218
Operation methods, conditions for flow production, 342
Operation step method, 568, 569
Operation-related waste, 173, 178, 180
Operational combinations, 193
Operational device improvements, 640
Operational rules, standard operations improvements, 639–640
Operations analysis charts, 735–736
Operations analysis table, 190–192, 735, 736
 aluminum casting deburring operation example, 192
Operations balancing, 219
Operations improvements, 103, 104, 105, 217
Operations manuals, 405
Operations standardization, 228
Operations, improving point of, 220
Operators
 conditions for flow production, 342
diecast factory case study, 377
 maintenance routines, 691
 reducing gaps between, 370
 shish-kabob vs. flow production approaches, 330–331
Opportunistic buying, 162
Optical displacement sensors, 578
Oral instructions, avoiding, 556
Order management, 81
Orderliness, 16, 157, 245–246, 510
 applied to die storage sites, 530–531
 applying to jigs and tools, 307
 beyond signboards, 302–306
 color-coded, 319, 384
 conveyance liveliness index, 304
 easy-to-maintain, 307, 310–313
 eliminating tools and jigs with, 313–316
 for cutting tools, 316–319
 for measuring tools, 318
 for oil, 318–319
 four stages in evolution, 312
 habitual, 302
 inventory liveliness index, 303–304
 just-let-go principle, 313, 314
 lined up inventory placement, 304–306
 made visible through red tags and signboards, 265–268
 obstacles to, 17
 visible, 252–253
Outer diameter/width sensors, 578
 applications, 578
Outlined orderliness, for jigs and tools, 309–310
Outlining technique, waste prevention with, 231
Overall efficiency, 66
Overkill waste, 173
Overload prevention devices, 706
Overproduction waste, 69, 174–175, 180
 beyond cycle time, 677
 preventing with A-B control, 676–677
Overseas production shifts, xi

P

P-Q analysis, 188, 345–346
P-Q analysis lists/charts, 777–781
Packing omission errors, 610
Paging andon, 464, 465–466
 hire method for using, 466
Painting process, reserved seat method example, 490
Paper lead-time, 4, 5
Parallel operations, 224–225, 536
 calculations for parts-production capacity work tables, 634
establishing in transfer machine blade replacement, 528
full vs. partial, 225
Pareto chart, 132, 457
Parking lots, well- and poorly-managed, 300
Parkinson’s Law, 126
Part omission errors, 607
Partial parallel operations, 225
calculations for parts-production capacity work tables, 633–634
Parts assembly
preventing omission of parts tightening, 681
preventing oversights with jidoka, 680–681
Parts development, 52
Parts inventories
demand trends, 475
strategies for reducing, 475–476
Parts list, depth and production method, 82
Parts placement
in cooperative operations, 370
standard operations improvements, 643
Parts tray/box, visible organization, 385
Parts waste, 157
Parts, improvements in picking up, 643–644
Parts-production capacity work table, 626, 629, 822–824
serial operations calculations, 633
steps in creating, 632–634
Pay raises, basis of, 394
PCB assembly plant, internal-external changeover improvements, 513–514
People
as root of production, 104, 107, 108
training for multi-process operations, 389
Per-day production total, 487
Per-unit time, 633
Performance below expectations, 686
Personnel costs, and manpower strategies, 63
Photoelectric switches, 572, 574, 682
applications, 572
object, detection method, and function, 573
Physical lead-time, 5
Pickup kanban, 444
Piecemeal approach, failure of, xiii
Pin dimension errors, 595
Pinch hitters, 407
Pitch, 66, 67, 337, 433, 469. See also Cycle time adjusting to worker pace, 358–359
approaches to calculating, 485
factors determining, 70
failure to maintain, 678
hourly, 482
individual differences in, 67
myth of conveyor contribution to, 156
Pitch buzzers, waste prevention with, 232
Pitch per unit, 649
Plane improvements, 26–27
Plywood gluing process, accidents, 696
Pneumatic cylinders
safety improvement from, 694
workpiece removal with, 667
Pneumatic switches, 680–681
Point improvements, 25
line improvements as accumulation of, 26
Poka-yoke, 119, 159, 177, 675, 680, 682.
See also Safety
and defect prevention, 566
approaches, 568–570
concept and methodology, 565–568
control devices, 567
defect prevention with, 564
detection devices, 570–585
drilling machine case study, 703
for crane operations, 706
for multi-process operations, 402–403
milling machine example, 705–706
safety applications, 703–709, 709
safety cage on press, 704
safety plate case, 703
stop devices, 566–567
warning devices, 567
Poka-yoke case studies, by defect type, 586–587
Poka-yoke checklists
three-point evaluation, 619–620
three-point response, 620–622
using, 616–622
Poka-yoke detection devices, 570
applications, 585
contact devices, 570–572
noncontact switches, 572–575
Poka-yoke/zero defects checklist, 820–821
Policy-based buying, 162
Position adjustments, avoiding, 537–538
Positioning sensors, 574
applications, 577
Positive attitude, 204–205
Possible utilization rate, 684–685, 708
Postural ease, 221
Power, inexpensive types, 222
PQCDS approach, 2, 3
Practical line balancing, 357, 358
Preassembly processes, scheduling, 477
Preparation waste, in external changeover procedures, 510
Preset stop positions, 680
Press die alignment errors, 596
Press operator, waste example, 77–78
Presses
 safety problems, 702
 worker separation, 703
Preventive inspection, 564
Preventive maintenance, 688, 708
Previous process-dependent production, 54
Price cutting, due to inventory, 325
Printed circuit board assembly shop, 211
arrow diagrams, 189, 212
Proactive improvement attitude, 54
Problem-solving, vs. evasive responses, 150
Process display standing signboards, 462–463
Process improvement models, 166, 167
Process route diagrams, 782–784
Process route tables, 347, 348
Process separation, 216, 219
Process waiting waste, 214, 218
Process, transfer, process, transfer system, 59
Process-and-go production, 55–59, 57, 59
Process-related waste, 177–178
Processing, 56, 160, 187
 lack of time spent in, 58
 shish-kabob vs. flow production approaches, 329–330
Processing errors, 586
Processing islands
 abolishment of, 396–398
 eliminating, 421, 426–427
Processing omissions, 580, 588–600
Processing sequence
 at diecast factory, 374, 376
 equipment layout by, 336–337, 353–355
Processing time, reducing to shorten lead-time, 55
Processing waste, 166–167, 180
Procrastination, 205, 207
Procurement
 applying JIT to, 47
 standardization, 229
Product inventory, 101, 102
 demand trends, 475
 strategies for reducing, 475–476
Product lead-time, 4
Product model changes
 and capacity utilization rates, 504
 avoidance of, 162
Product set-up errors, 602
Product-out approach, 36, 416, 483, 555
 once-a-month production scheduling in, 479
Product-specific delivery sites, 384
Product-specific inventory management, 305
Production
 equipment- vs. people-oriented, 112–113
 roots in people, 104, 108
 waste-free, 49
Production analysis, 345–348
Production as music, 29–50, 51–54
 three essential elements, 50
Production factor waste, 159–160
 conveyance and, 163–166
 inspection and, 167–172
 processing and, 166–167
 retention and, 160–163
Production input, 59, 60
Production kanban, 443, 445
Production leveling, 21, 421–422, 482.
 See also Leveling
as prerequisite for efficiency, 71
 flow production development for, 492–494
 importance to efficiency, 69
 kaizen retooling for, 494–495
 strategies for realizing, 492–494
 with kanban systems, 442, 445
Production management
 conventional approach, 3–7
 defined, 6
 management system, 6
 physical system, 6
 vs. JIT production management, 1–3
Production management boards, 457,
 470–471, 802–804
Production method
 and defect prevention, 555
 shish-kabob vs. level production, 484, 486
Production output, 59, 60
 and in-process inventory, 89
 and volume of orders, 61
 increasing without intensifying labor, 86
Production philosophy, shish-kabob vs.
 level production, 483–484, 486
Production planning, 52
Production schedules, 4
 leveling production, 482
 once-a-day production, 480–482
 once-a-month production, 478–479
once-a-week production, 479–480
strategies for creating, 477
Production standards, 623. See also Standard operations
Production techniques, 715
JIT Management Diagnostic List, 718
Production work orders, vs. kanban systems, 437–439
Productivity, 59–61
and volume of orders, 61
boosting with safety measures, 701
goconstants with humanity, 387–388
volume-oriented approach to, 415
Productivity equation, 415, 416
Products, in PQCDS approach, 3
Profit
and cost reduction, 36
losses through motion, 77
Profitable factories, 40
anatomy of, 39
Progress andon, 464, 469–470
Proper arrangement, 16, 157, 243–245, 510
applied to die storage sites, 530–531
five-point checklist, 772
made visible through red tags and signboards, 265–268
obstacles to, 17
visible, 251–252
Proximity switches, 574
applications, 576
Pseudo improvements, 126–130
Public changeover timetable, 505, 808–809
Pull production, 10, 26, 51, 52, 54, 70, 438
flow of information and materials in, 53
relationship to goods, 439
using full work system, 367
using hand delivery, 366
vocal, 371, 372
Punching lathe, worker separation, 702
Purchasing-related kanban, 449–450
Push production, 10, 26, 51, 419, 438, 439
as obstacle to synchronization, 364–365
flow of information and materials in, 53
improving through 5Ss, 241
in PQCDS approach, 3
process-by-process, 123–126
Quality assurance, 724
and defect identification, 546–561
and poka-yoke system, 565–585
as starting point in building products, 541–542
in JIT production system, 11
JIT five levels of QA achievement, 542–546
poka-yoke defect case studies, 586–615
use of poka-yoke and zero defects checklists, 616–622
zero defects plan, 561–565
Quality check points, for standard operations charts, 636–638
Quality control inspection method, 169

R

Radar chart, 727
Rational production, 120–121, 122
shish-kabob vs. flow production approaches, 330
Reality-based leveling, 23
Recession-resistant production system, 8
Red tag campaign reports, 761–763
Red tag criteria, setting, 273–274
Red tag episodes, 281
employee involvement, 284
excess pallets, 283
red tag stickers, 283–284
red tagging people, 282
showing no mercy, 284–285
twenty years of inventory, 281–282
twice red tagged, 282
yellow tag flop, 283
Red tag forms, 271
Red tag items list, 765
Red tag list, computer-operated, 280
Red tag strategy, xii, 17, 265–268, 269–270, 455
campaign timing, 268
case study at Company S, 285–289
criteria setting, 273–274
for visual control, 268–269
implementation case study, 290–293
indicating where, what type, how many, 268

Q

QCD (quality, cost, delivery) approach, 2
Quality
estimated, 122
main tasks in, 291
making tags, 274–275
overall procedure, 267
project launch, 271, 273
red tag episodes, 281–285
red tagging computers, 278–281
steps, 270–278, 272
tag attachment, 276
target evaluation, 276–278
target identification, 273
understanding, 282
waste prevention with, 231
Red tag strategy checklist, 292
Red tag strategy report form, 293
Red tag targets
 evaluating, 276–278
 identifying, 273
Red tags, 758, 759, 760
 attaching, 276
 example, 275
 making, 274–275
Reliability, increasing in equipment, 688
Reordering point method, 435–437, 475
Replacement waste, 509–510
 eliminating in internal changeover, 518–523
Required volume planning, 52
Research and development, 37
Reserved carts, for changeover, 531–532
Reserved seat method, 489–490
 painting process example, 490
Resistance, 42, 43, 199, 201–202
 and arguments against JIT improvement, 200
 and inventory accumulation, 322
 by foremen and equipment operators, 30
 from senior management, 15
 to change, 41, 84
 to multiple-skills training, 407
Responsiveness, 453
Retention, 56, 57, 160, 186, 187
 and anticipatory buying, 162
 and anticipatory manufacturing, 162
 and capacity imbalances, 161–162
 in shish-kabob production, 484
 process, retention, transfer system, 59
 reducing, 59
 waste in, 160–163
Retention waste
 eliminating, 213–214
 lot waiting waste, 215–216
 process waiting waste, 214
Retooling time, 633
Retooling volume, 633
Return on investment (ROI), inventory and, 95
Return to start position, 663
 applying jidoka to, 666, 667
Returning waste, 511
Rhythmic motions, 221
Rules, for safety, 696, 697, 699
S
S-shaped manufacturing cells, 362
Safety, 152, 406, 725
 basic training for, 698–699
 defined, 698–699
 for multi-process operations, 403–404
 full-fledged, 70–709
 in JIT production system, 12
 in PQCDS approach, 3
 in standard operations chart, 701
 poka-yoke applications, 703–703
 standard operations goals, 624
 through 5Ss, 241
 visual assurance, 707–708
Safety cage, 704
Safety check points, for standard operations charts, 637
Safety improvement, pneumatic cylinders to springs, 694
Safety plate, 703
Safety strategies for zero injuries/accidents, 699–709
Salad oil example, 312
Sales figures
 and equipment improvements, 115
 impact of seasons and climatic changes on, 97
Sales price, 36
 basis in market price, 35
Sampling inspection, 120–122
Screw-fastening operation, waste in, 148
Searching waste, 154
Seasonal adjustments, 323–324
Seiketsu (cleanup), 16, 239, 246–247
Seiri (proper arrangement), 16, 238, 243–245
 photo exhibit, 260
Seiso (cleanliness), 16, 239, 246
Seiton (orderliness), 16, 245–246, 328
 photo exhibit, 260
Self-inspection, 392
Senior management
 approval for 5S approach, 262
 ignorance of production principles, 88
 need to believe in JIT, 139
 on-site inspection by, 264
 responsibility for 5S strategy, 263
 role in awareness revolution, 14–15
 role in production system change, 3
 Seniority, as basis of pay raises, 394
Sensor assembly line, multi-process operations on, 363
Sequential mixed loads, 379
Serial operations, 224
 calculations for parts-production capacity
 work tables, 633
 eliminating, 527–529
Set-up
 applying human automation to, 669
 pre-manufacturing, 499
 unprocessed workpieces, 663, 667
Set-up errors, 560, 586, 601–606
Seven QC tools, 132, 133
Seven types of waste, 172–174
 conveyance waste, 176
 defect production waste, 176–177
 idle time waste, 178–179
 inventory waste, 175–176
 operation-related waste, 178
 overproduction waste, 174–175
 process-related waste, 177–178
Shared specifications, 419
Shish-kabob production, 10, 17, 18, 20, 46, 70, 104, 166, 207
 approach to processing, 329–330
 as large-lot production, 423
 as obstacle to synchronization, 371–373
 disadvantages, 158
 equipment approach, 331
 equipment layout in, 330
 in-process inventory approach, 331
 lead time approach, 331
 operator approaches, 330–331
 production scheduling for, 476
 rational production approach in, 330
 vs. flow production, 328–332
 vs. level production, 482–485, 486
Shtetsuke (discipline), 16, 239, 247–249
Short-delivery scheduling, 379, 497
Shotblaster
 at diecast factory, 375
 compact, 354, 377, 398–399
Shukan (custom), 689
Signal kanban, 443, 445, 446
Signboard strategy, 442, 455, 464
 amount indicators, 301–302
 and FIFO, 302–303
 defined, 294–296
 determining locations, 296
 die storage site using, 530
 for delivery site management, 383
 for visual orderliness, 293–294
 habitual orderliness, 302
 indicating item names, 299–300
 indicating locations, 298
 item indicators, 301
 location indicators, 299
 parking lot item indicator examples, 300
 preparing locations, 296–298
 procedure, 297
 signboard examples, 295
 steps, 296–302
Signboards, 43, 44, 265–268
 overall procedure, 267
 waste prevention with, 231
Simplified work procedures, 404
 and defect prevention, 549
Single-process workers, 339, 375, 419
Single-product factories, 71
Single-product load, 379
Sink cabinet factory, flow production example, 493
Skin-deep automation, 79
Slow-but-safe approach, 102–103
Small-volume production, xi, 2, 62, 278, 321, 497
Social waste, 159
Solder printing process, flow of goods improvement, 641
Sorting inspection, 168, 169
Spacer blocks
 and manual positioning, 524–525
 eliminating need for manual dial positioning with, 526
Speaker cabinet processing operations, improvements, 646–647
Special-order production, 2
Specialization
 in Western vs. Japanese unions, 393–394
 vs. multi-process operations, 639
Specialized carts, for changeover operations, 532
Specialized lines, 371–373
Specialized machines, cost advantages, 332
Speed, vs. cycle time, 116
Spindle hole punch processing omission, 590
Spirit of improvement, 43, 44
Staff reduction, 62, 418
Standard operating processes (SOPs), 23
Standard operation forms, 626
parts-production capacity work table, 626
standard operations chart, 627–628, 628
standard operations combination chart, 626, 627
standard operations pointers chart, 626–627, 627
steps in creating, 630–638
work methods chart, 627
and multi-skilled workers, 650–651
and operation improvements, 638–649
as endless process, 624
combination charts for, 223–226
communicating meaning of, 652
cost goals, 624
cycle time and, 625
defined, 623
delivery goals, 624
eliminating walking waste, 645–649
equipment improvements facilitating, 640
equipment improvements to prevent defects, 640
establishing, 628–630, 629–630, 654
factory-wide establishment, 652
forms, 620–628
goals, 624
implementing for zero injuries/accidents, 699–703
improvement study groups for, 653
improvements to flow of goods/materials, 638–640
in JIT production system, 11–12
materials flow improvements, 641
motion waste elimination through, 639
movement efficiency improvements, 642–643
multi-process-operations improvements, 639
need for, 623–624
obtaining third-party help, 653
one-handed to two-handed task improvements, 644–645
operational rules improvements, 639–640
parts placement improvements, 643
picking up parts improvements, 644
preserving, 650–654
quality goals, 624
rejection of status quo in, 653
reminder postings, 652
role in JIT introduction, 23–24
safety goals, 624, 697
separating human work from machine work for, 640, 649–650
sign postings, 652
spiral of improvement, 629
standard in-process inventory and, 625–626
ten commandments for, 651–654
three basic elements, 625–626
transparent operations and, 628
waste prevention through, 226
wood products manufacturer's combination charts, 227
work sequence and, 625
workshop leader skills, 652, 653
Standard operations chart, 627, 628, 629, 631, 637
safety points, 700, 701
steps in creating, 630–632, 636–638
Standard operations combination chart, 193, 457, 626, 627, 629, 631, 825–826
steps in creating, 634–636
Standard operations form, 831–833
Standard operations pointers chart, 626–627, 629
Standard operations summary table, 827–828
Standard operations summary table, 827–828
Standard parameters, changeover of, 499
Standardization of equipment, 421
waste prevention by, 228–230
Standby-for-lot inventory, 161
Standby-for-processing inventory, 161
Standing signboards, 462–463
Standing while working, 19, 118, 355, 424, 425, 429
and cooperative operations, 368
as condition for flow production, 339
in assembly lines, 355–359
in multi-process operations, 399–400
in processing lines, 359–360
work table adjustments for, 360
Statistical inventory control methods, 475
Statistical method, 570
 pokayoke, 659

Status quo
 denying, 205
 failure to ensure corporate survival, 15
 reluctance to change, 42

Steady-demand inventories, 476

Stop devices, 566–567

Stop-and-go production, 55–59, 57

Stopgap measures, 150

Storage, cutting tools, 318

Straight-line flow production, 340, 360

Subcontracting, applying JIT to, 47

Subcontractors, bullying of, 378

Sudden-demand inventories, 476

Suggestion systems, 36

Supplier kanban, 443, 444

Supplies management, 81

Surplus production, 323
 and defects, 549

Sweat workers, 74, 75

Symmetrical arm motions, 220–221

Synchronization, 363–364
 as condition for flow production, 337
 bottlenecked process obstacle, 364
 changeover difficulties, 373
 obstacles to, 364–368
 PCB assembly line, 366, 367
 push method as obstacle to, 364–365
 work procedure variations as obstacle to,
 367–371

T

Taboo phrases, 202
 Japanese watch manufacturer, 203

Takt time, 368, 469, 482

Tap processing errors, 606

Tapping operations, defect prevention,
 673–674

Temporary storage, 160

Three Ms, in standard operations, 623

Three Ps, 432

Three-station arrangements, 165

Time graph analysis, changeover
 improvements, 513

Time workers, 75

Tool bit exchange, one-touch, 522

Tool elimination
 as internal changeover improvement,
 519–520
 by transferring tool functions, 316

Tool preparation errors, 560, 587, 615

Tools
 5-point check for orderliness, 256
 applying orderliness to, 307
 close storage site, 311
 color-coded orderliness, 308–309
 combining, 314, 315
 easy-to-maintain orderliness for, 307
 eliminating through orderliness, 313–316
 indicators, 308, 309
 machine-specific, 311
 outlined orderliness, 309

Tools placement, 222
 order of use, 222

Top-down improvements, 134–139

Torque tightening errors, 599

Torso motion, minimizing, 221

Total quality control (TQC), 36, 132

Total value added, 715

Training
 for basic safety, 698–699
 for multi-process operations, 407–413
 for multiple skills, 400
 in CCO, 708
 in Japanese vs. Western factories, 395

Training costs, for multi-process operations,
 394–395

Transfer, 56, 57, 58

Transfer machine blade replacement, 528

Transparency, in multi-process operations,
 405

Transparent operations, and standard
 operations, 628

Transport kanban, 443

Transport routes, 380–382

Transportation lead-time, 99

Two-handed task improvements, 644–645
 and safety, 704

Two-process flow production lines, 360

U

U-shaped manufacturing cells, 340, 360–362
 as condition for flow production, 341
 for multi-process operations, 395–396
Unbalanced capacity, 322
Unbalanced inventory, 161, 322
Union leadership, 84
Unmanned processes, 668
Unneeded equipment list, 767
Unneeded inventory list, 765, 766
Unneeded items
 moving out, 266
 separating from needed items, 266
 throwing out, 266
types and disposal treatments, 277
unneeded equipment list, 278
unneeded inventory items list, 277
Unprocessed workpieces, set-up, 663, 668
Unprofitable factories, anatomy of, 38
Usability testing, and defect prevention, 549–550
Use points, maximum proximity, 222
Usefulness, and value-added, 147

V
Value analysis (VA), 157
Value engineering (VE), 157
Value-added work, 85, 166
 JIT Management Diagnostic List, 717
 vs. wasteful motion, 86, 147
VCR assembly line, cooperative operations example, 429
Vertical development, 20, 24–27, 26, 378, 391
Vertical improvement makers, 167
Vibration switches, 574
 applications, 583
Visible 5Ss, 249–251, 252
 visible cleanliness, 253
 visible discipline, 254–255
 visible orderliness, 252–253
 visible proper arrangement, 251–252
 visibly cleaned up, 253
Visible cleanliness, 253
Visible discipline, 254–255
Visible orderliness, 252–253
with signboard strategy, 295
Visible proper arrangement, 251–252
Visibly cleaned up, 253
Visual control, 26, 120, 231, 251, 723
 and kaizen, 471–473
 andon for, 456, 464–470
 as non-guarantee of improvements, 453–454, 472–473
 defect prevention with, 563
defective item displays for, 456, 457, 458
 error prevention through, 456, 458
 for safety, 700
in JIT production, 10–11
in kanban systems, 437
kaizen boards for, 462
kanban for, 456, 457
 management flexibility through, 419
 preventing communication errors with, 556
 process display standing signboards, 462–463
 production management boards for, 456, 457, 470–471
red demarcators, 455, 456
red tag strategy for, 268–269, 455, 456
signboard strategy, 455, 456
 standard operation charts for, 456, 457
 standing signboards for, 462–463
 through kanban, 440
types of, 455–459
visual orderliness case study, 459–462
waste prevention with, 230–232
white demarcators, 455, 456
Visual control tools, roles in improvement cycle, 473
Visual orderliness
 case study, 459–462
 in electronics parts storage area, 460
 signboard strategy for, 295–306
Visual proper arrangement, 17
Visual safety assurance, 707–708
Vocal pull production, 371, 372
Volume of orders, and production output, 61

W
Walking time, 635
Walking waste, 153–154, 173, 536
 eliminating for standard operations, 645–649
Wall of fixed ideas, 210
Warehouse inventories, 161, 173
 as factory graveyards, 73
 reduction to zero, 20
Warehouse maintenance costs, 73
Warehouse waste, 69
Warning *andon*, 466–468
Warning devices, 567
Warning signals, 567
Washing unit, 364
 compact, 356
 in-line layout, 365
Waste, xii, 15, 643
 5MQS waste, 152–159
 and corresponding responses, 180
 and inventory, 48
 and motion, 75
 and red tag strategy, 269
 as everything but work, 182, 184, 191
 avoiding creation of, 226–236
 concealment by shish-kabob production, 17, 158
 conveyance due to inventory, 90
 deeply embedded, 18, 150, 151
 defined, 146–150
 developing intuition for, 198
 eliminating with 5Ss, 508–511
 elimination by *kanban*, 440
 elimination through JIT production, xi, 8, 341–342
 embedding and hiding, 84
 examples of motion as, 76
 hidden, 179
 hiding in conveyor flows, 67
 how to discover, 179–181, 179–198
 how to remove, 198–226
 identifying in changeover procedures, 508–511
 in changeover procedures, 501
 in external changeover operations, 510–511
 in internal changeover operations, 509–510
 in screw-fastening operation, 148
 inherited vs. inherent, 79–84
 invisible, 111
 JIT and cost reduction approach to, 69–71
 JIT Production System perspective, 152
 JIT’s seven types of, 172–179
 JITs seven types of, 172–179
 latent, 198
 making visible, 147
 minimizing through *kanban* systems, 437
 production factor waste, 159–172
 reasons behind, 146–150
 reinforcing by equipment improvements, 111–112
 related to single large cleaning chamber, 155
 removing, 84–86, 198–226
 severity levels, 171–172
 through computerization, 83
 total elimination of, 145, 152
 types of, 151–179
Waste checklists, 194–198
 five levels of magnitude, 195
 how to use, 195
 negative/positive statements, 197
 process-specific, 195, 196, 197, 198
 three magnitude levels, 197
 workshop-specific, 195
Waste concealment, 454
 by inventory, 326, 327
 revealing with one-piece flow, 350–351, 352
Waste discovery, 179–181
 back-door approach to, 181–183
 through current conditions analysis, 185–198
 with arrow diagrams, 186–190
 with one-piece flow under current conditions, 183–185
 with operations analysis tables, 190–192
 with standard operations, 193–194
 with waste-finding checklists, 194–198
Waste prevention, 226, 228
 and do it now attitude, 236
 by avoiding fixed thinking, 235–236
 by outlining technique, 231
 by thorough standardization, 228–230
 with 5W1H sheet, 232–236
 with *andon*, 232
 with *kanban* system, 232
 with one-piece flow, 353
 with pitch and inspection buzzers, 232
 with red tagging, 231
 with signboards, 231
 with visual and auditory control, 230–232
Waste proliferation, 198, 199
Waste removal, 198–199
 50% implementation rate, 205–206
 and Basic Spirit principles for improvement, 204
 and denial of status quo, 205
 and eliminating fixed ideas, 204
 basic attitude for, 199–211
 by correcting mistakes, 207
 by cutting spending on improvements, 207
 by experiential wisdom, 210–211
 by Five Whys approach, 208–210
by using the brain, 208
in wasteful movement, 211–217
lot waiting waste, 219
positive attitude towards, 204–205
process waiting waste, 218
through combination charts for standard
operations, 223–226
wasteful human movement, 217–223
Waste transformation, 198
Waste-finding checklists, 737–743
process-specific, 739, 741, 742, 743
workshop-specific, 738, 740
Waste-free production, 49
Waste-related forms, 730
5W1H checklists, 744–746
arrow diagrams, 730–732
general flow analysis charts, 733–734
operations analysis charts, 735–736
waste-finding checklists, 737–743
Wasteful movement
and eliminating retention waste, 213–217
by people, 217–223
eliminating, 211, 213
Wastology, 145
Watch stem processes, 397, 398
Watching waste, 154
Weekly JIT improvement report, 846–848
Whirligig beetle (mizusumashi), 465
Wire harness molding process, internal
changeover improvement case
study, 517–518
Withdrawal kanban, 444
Wood products factory, multi-process
operations in, 425
Work
as value-added functions, 182
meaning of, 74–75
motion and, 74–79
vs. motion, 657, 659
Work environment, comfort of, 223
Work methods chart, 627, 629, 829–830
Work operations, primacy over equipment
improvements, 103–108
Work sequence, 636
and standard operations, 625
arranging equipment according to, 638
for standard operations charts, 636
Work tables, ergonomics, 222
Work-in-process, 8
management, 81, 83
Work-to-motion ratio, 86
Work/material accumulation waste, 173
Worker hour minimization, 62, 66–69
Worker mobility, 19
Worker variations, 367–371
Workerless automation, 106
Workpiece directional errors, 605
Workpiece extraction, 663
Workpiece feeding, applying automation to,
665
Workpiece motion, waste in, 158–159
Workpiece pile-ups, 25, 118
Workpiece positioning errors, 605
Workpiece processing, applying jidoka to,
664
Workpiece removal
applying human automation to, 668
motor-driven chain for, 695
with processed cylinders, 667
Wrong part errors, 587, 612, 613
Wrong workpiece, 560, 587, 614

Y

Yen appreciation, xi

Z

Zero accidents, 699
Zero breakdowns, 684, 685
production maintenance cycle for, 687
with 5S approach, 241
Zero changeovers, with 5S approach, 242
Zero complaints, with 5S approach, 242
Zero defects, 545
5S strategy for, 565
human errors and, 562–563
information strategies, 563
machine cause strategies, 564
material cause strategies, 564
overall plan for achieving, 561–565
production maintenance cycle for, 687
production method causes and strategies,
564–565
with 5S approach, 241
Zero defects checklists
three-point evaluation, 619–620
three-point response, 620–622
using, 616–622

Zero delays, with 5S approach, 242
Zero injuries
strategies for, 699–709

with 5S approach, 241

Zero inventory, 20, 98–102
importance of faith in, 176
Zero red ink, with 5S approach, 242
Zigzag motions, avoiding, 221
Hiroyuki Hirano believes Just-In-Time (JIT) is a theory and technique to thoroughly eliminate waste. He also calls the manufacturing process the equivalent of making music. In Japan, South Korea, and Europe, Mr. Hirano has led the on-site rationalization improvement movement using JIT production methods. The companies Mr. Hirano has worked with include:

- Polar Synthetic Chemical Kogyo Corporation
- Matsushita Denko Corporation
- Sunwave Kogyo Corporation
- Olympic Corporation
- Ube Kyosan Corporation
- Fujitsu Corporation
- Yasuda Kogyo Corporation
- Sharp Corporation and associated industries
- Nihon Denki Corporation and associated industries
- Kimura Denki Manufacturing Corporation and associated industries
- Fukuda ME Kogyo Corporation
- Akazashina Manufacturing Corporation
- Runeau Public Corporation (France)
- Kumho (South Korea)
- Samsung Electronics (South Korea)
- Samsung Watch (South Korea)
- Sani Electric (South Korea)

Mr. Hirano was born in Tokyo, Japan, in 1946. After graduating from Senshu University’s School of Economics, Mr. Hirano worked with Japan’s largest computer manufacturer in laying the conceptual groundwork for the country’s first full-fledged production management system. Using his own
interpretation of the JIT philosophy, which emphasizes “ideas and tech-
niques for the complete elimination of waste,” Mr. Hirano went on to
help bring the JIT Production Revolution to dozens of companies, includ-
ing Japanese companies as well as major firms abroad, such as a French
automobile manufacturer and a Korean consumer electronics company.

The author’s many publications in Japanese include: Seeing Is Under-
standing: Just-In-Time Production (Me de mite wakaru jasuto in taimu
seisanb hoshiki), Encyclopedia of Factory Rationalization (Kojo o gorika
suru jiten), 5S Comics (Manga 5S), Graffiti Guide to the JIT Factory Revo-
lution (Gurafiti JIT kojo kakumei), and a six-part video tape series entitled
JIT Production Revolution, Stages I and II. All of these titles are available
in Japanese from the publisher, Nikkan Kogyo Shimbun, Ltd. (Tokyo).

In 1989, Productivity Press made Mr. Hirano’s JIT Factory Revolution: